Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(13): 9147-9160, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37395055

ABSTRACT

The glycine to cysteine mutation at codon 12 of Kirsten rat sarcoma (KRAS) represents an Achilles heel that has now rendered this important GTPase druggable. Herein, we report our structure-based drug design approach that led to the identification of 14, AZD4747, a clinical development candidate for the treatment of KRASG12C-positive tumors, including the treatment of central nervous system (CNS) metastases. Building on our earlier discovery of C5-tethered quinazoline AZD4625, excision of a usually critical pyrimidine ring yielded a weak but brain-penetrant start point which was optimized for potency and DMPK. Key design principles and measured parameters that give high confidence in CNS exposure are discussed. During optimization, divergence between rodent and non-rodent species was observed in CNS exposure, with primate PET studies ultimately giving high confidence in the expected translation to patients. AZD4747 is a highly potent and selective inhibitor of KRASG12C with an anticipated low clearance and high oral bioavailability profile in humans.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Neoplasms , Animals , Humans , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Neoplasms/drug therapy , Drug Design , Glycine/therapeutic use , Mutation , Lung Neoplasms/drug therapy
2.
J Med Chem ; 65(9): 6940-6952, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35471939

ABSTRACT

KRAS is an archetypal high-value intractable oncology drug target. The glycine to cysteine mutation at codon 12 represents an Achilles heel that has now rendered this important GTPase druggable. Herein, we report our structure-based drug design approach that led to the identification of 21, AZD4625, a clinical development candidate for the treatment of KRASG12C positive tumors. Highlights include a quinazoline tethering strategy to lock out a bio-relevant binding conformation and an optimization strategy focused on the reduction of extrahepatic clearance mechanisms seen in preclinical species. Crystallographic analysis was also key in helping to rationalize unusual structure-activity relationship in terms of ring size and enantio-preference. AZD4625 is a highly potent and selective inhibitor of KRASG12C with an anticipated low clearance and high oral bioavailability profile in humans.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Antineoplastic Agents/pharmacology , Drug Design , Humans , Lung Neoplasms/drug therapy , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/pharmacology , Structure-Activity Relationship
3.
J Med Chem ; 65(4): 3306-3331, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35133824

ABSTRACT

ATAD2 is an epigenetic bromodomain-containing target which is overexpressed in many cancers and has been suggested as a potential oncology target. While several small molecule inhibitors have been described in the literature, their cellular activity has proved to be underwhelming. In this work, we describe the identification of a novel series of ATAD2 inhibitors by high throughput screening, confirmation of the bromodomain region as the site of action, and the optimization campaign undertaken to improve the potency, selectivity, and permeability of the initial hit. The result is compound 5 (AZ13824374), a highly potent and selective ATAD2 inhibitor which shows cellular target engagement and antiproliferative activity in a range of breast cancer models.


Subject(s)
ATPases Associated with Diverse Cellular Activities/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , DNA-Binding Proteins/antagonists & inhibitors , Cell Line, Tumor , Crystallography, X-Ray , Drug Discovery , Drug Screening Assays, Antitumor , Female , Humans , Models, Molecular , Small Molecule Libraries , Structure-Activity Relationship , Substrate Specificity , Tumor Stem Cell Assay
4.
J Med Chem ; 64(23): 17146-17183, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34807608

ABSTRACT

Aberrant activity of the histone methyltransferase polycomb repressive complex 2 (PRC2) has been linked to several cancers, with small-molecule inhibitors of the catalytic subunit of the PRC2 enhancer of zeste homologue 2 (EZH2) being recently approved for the treatment of epithelioid sarcoma (ES) and follicular lymphoma (FL). Compounds binding to the EED subunit of PRC2 have recently emerged as allosteric inhibitors of PRC2 methyltransferase activity. In contrast to orthosteric inhibitors that target EZH2, small molecules that bind to EED retain their efficacy in EZH2 inhibitor-resistant cell lines. In this paper we disclose the discovery of potent and orally bioavailable EED ligands with good solubilities. The solubility of the EED ligands was optimized through a variety of design tactics, with the resulting compounds exhibiting in vivo efficacy in EZH2-driven tumors.


Subject(s)
Enzyme Inhibitors/pharmacology , Polycomb Repressive Complex 2/antagonists & inhibitors , Allosteric Regulation , Animals , Catalytic Domain , Cell Line , Cell Proliferation/drug effects , Enhancer of Zeste Homolog 2 Protein/chemistry , Enhancer of Zeste Homolog 2 Protein/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Heterocyclic Compounds/chemistry , Humans , Ligands , Polycomb Repressive Complex 2/chemistry , Rats , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 39: 127904, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33684441

ABSTRACT

Free Energy Perturbation (FEP) calculations can provide high-confidence predictions of the interaction strength between a ligand and its protein target. We sought to explore a series of triazolopyrimidines which bind to the EED subunit of the PRC2 complex as potential anticancer therapeutics, using FEP calculations to inform compound design. Combining FEP predictions with a late-stage functionalisation (LSF) inspired synthetic approach allowed us to rapidly evaluate structural modifications in a previously unexplored region of the EED binding site. This approach generated a series of novel triazolopyrimidine EED ligands with improved physicochemical properties and which inhibit PRC2 methyltransferase activity in a cancer-relevant G401 cell line.


Subject(s)
Drug Design , Enzyme Inhibitors/pharmacology , Polycomb Repressive Complex 2/antagonists & inhibitors , Purines/pharmacology , Thermodynamics , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Ligands , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Polycomb Repressive Complex 2/metabolism , Purines/chemical synthesis , Purines/chemistry , Quantum Theory , Structure-Activity Relationship
6.
Chemistry ; 26(70): 16818-16823, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32706492

ABSTRACT

A palladium-catalysed Buchwald-Hartwig amination for lenalidomide-derived aryl bromides was optimised using high throughput experimentation (HTE). The substrate scope of the optimised conditions was evaluated for a range of alkyl- and aryl- amines and functionalised aryl bromides. The methodology allows access to new cereblon-based bifunctional proteolysis targeting chimeras with a reduced step count and improved yields.


Subject(s)
Amines/chemistry , Bromides/chemistry , Lenalidomide/chemistry , Proteolysis/drug effects , Amination , Ligands , Ubiquitin-Protein Ligases/metabolism
7.
J Med Chem ; 63(9): 4468-4483, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32023060

ABSTRACT

Attempts to directly drug the important oncogene KRAS have met with limited success despite numerous efforts across industry and academia. The KRASG12C mutant represents an "Achilles heel" and has recently yielded to covalent targeting with small molecules that bind the mutant cysteine and create an allosteric pocket on GDP-bound RAS, locking it in an inactive state. A weak inhibitor at this site was optimized through conformational locking of a piperazine-quinazoline motif and linker modification. Subsequent introduction of a key methyl group to the piperazine resulted in enhancements in potency, permeability, clearance, and reactivity, leading to identification of a potent KRASG12C inhibitor with high selectivity and excellent cross-species pharmacokinetic parameters and in vivo efficacy.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Quinazolines/therapeutic use , Quinolones/therapeutic use , Allosteric Regulation , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Caco-2 Cells , Cell Line, Tumor , Drug Design , Humans , Male , Mice, Nude , Molecular Conformation , Mutation , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/chemical synthesis , Quinazolines/pharmacokinetics , Quinolones/chemical synthesis , Quinolones/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship , Xenograft Model Antitumor Assays
8.
Org Lett ; 21(22): 9128-9132, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31696715

ABSTRACT

The facile synthesis of both saturated and unsaturated tricyclic pyrrolo-pyridones starting from a single readily available, common monocyclic reagent has been developed. An intermolecular annulation via a tandem Buchwald-Hartwig/Heck reaction led to the synthesis of ß-carbolinones. The analogous semisaturated tricyclic pyrrolo-pyridones were prepared in good to excellent yields by sequential Buchwald-Hartwig and Fischer indole reactions. The methods feature mild reaction conditions and good functional group tolerance.

9.
ACS Chem Biol ; 13(11): 3131-3141, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30335946

ABSTRACT

B-cell lymphoma 6 (BCL6) inhibition is a promising mechanism for treating hematological cancers but high quality chemical probes are necessary to evaluate its therapeutic potential. Here we report potent BCL6 inhibitors that demonstrate cellular target engagement and exhibit exquisite selectivity for BCL6 based on mass spectrometry analyses following chemical proteomic pull down. Importantly, a proteolysis-targeting chimera (PROTAC) was also developed and shown to significantly degrade BCL6 in a number of diffuse large B-cell lymphoma (DLBCL) cell lines, but neither BCL6 inhibition nor degradation selectively induced marked phenotypic response. To investigate, we monitored PROTAC directed BCL6 degradation in DLBCL OCI-Ly1 cells by immunofluorescence and discovered a residual BCL6 population. Analysis of subcellular fractions also showed incomplete BCL6 degradation in all fractions despite having measurable PROTAC concentrations, together providing a rationale for the weak antiproliferative response seen with both BCL6 inhibitor and degrader. In summary, we have developed potent and selective BCL6 inhibitors and a BCL6 PROTAC that effectively degraded BCL6, but both modalities failed to induce a significant phenotypic response in DLBCL despite achieving cellular concentrations.


Subject(s)
Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors , Quinolones/pharmacology , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Adaptor Proteins, Signal Transducing , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , HEK293 Cells , Humans , Ligands , Lymphoma, Large B-Cell, Diffuse/drug therapy , Peptide Hydrolases/metabolism , Protein Binding , Proteolysis , Proto-Oncogene Proteins c-bcl-6/chemistry , Proto-Oncogene Proteins c-bcl-6/metabolism , Quinolones/chemical synthesis , Quinolones/metabolism , Thalidomide/chemical synthesis , Thalidomide/metabolism , Ubiquitin-Protein Ligases/metabolism
11.
J Med Chem ; 60(10): 4386-4402, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28485934

ABSTRACT

Inhibition of the protein-protein interaction between B-cell lymphoma 6 (BCL6) and corepressors has been implicated as a therapeutic target in diffuse large B-cell lymphoma (DLBCL) cancers and profiling of potent and selective BCL6 inhibitors are critical to test this hypothesis. We identified a pyrazolo[1,5-a]pyrimidine series of BCL6 binders from a fragment screen in parallel with a virtual screen. Using structure-based drug design, binding affinity was increased 100000-fold. This involved displacing crystallographic water, forming new ligand-protein interactions and a macrocyclization to favor the bioactive conformation of the ligands. Optimization for slow off-rate constant kinetics was conducted as well as improving selectivity against an off-target kinase, CK2. Potency in a cellular BCL6 assay was further optimized to afford highly selective probe molecules. Only weak antiproliferative effects were observed across a number of DLBCL lines and a multiple myeloma cell line without a clear relationship to BCL6 potency. As a result, we conclude that the BCL6 hypothesis in DLBCL cancer remains unproven.


Subject(s)
Protein Interaction Maps/drug effects , Proto-Oncogene Proteins c-bcl-6/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Molecular Docking Simulation , Proto-Oncogene Proteins c-bcl-6/antagonists & inhibitors
12.
J Med Chem ; 59(6): 2346-61, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26878898

ABSTRACT

Recent literature has claimed that inhibition of the enzyme MTH1 can eradicate cancer. MTH1 is one of the "housekeeping" enzymes that are responsible for hydrolyzing damaged nucleotides in cells and thus prevent them from being incorporated into DNA. We have developed orthogonal and chemically distinct tool compounds to those published in the literature to allow us to test the hypothesis that inhibition of MTH1 has wide applicability in the treatment of cancer. Here we present the work that led to the discovery of three structurally different series of MTH1 inhibitors with excellent potency, selectivity, and proven target engagement in cells. None of these compounds elicited the reported cellular phenotype, and additional siRNA and CRISPR experiments further support these observations. Critically, the difference between the responses of our highly selective inhibitors and published tool compounds suggests that the effect reported for the latter may be due to off-target cytotoxic effects. As a result, we conclude that the role of MTH1 in carcinogenesis and utility of its inhibition is yet to be established.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , DNA Repair Enzymes/antagonists & inhibitors , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , Drug Discovery , Humans , Models, Molecular , RNA, Small Interfering/pharmacology , Rats , Structure-Activity Relationship
14.
J Med Chem ; 56(5): 2125-38, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23394205

ABSTRACT

ATR is an attractive new anticancer drug target whose inhibitors have potential as chemo- or radiation sensitizers or as monotherapy in tumors addicted to particular DNA-repair pathways. We describe the discovery and synthesis of a series of sulfonylmorpholinopyrimidines that show potent and selective ATR inhibition. Optimization from a high quality screening hit within tight SAR space led to compound 6 (AZ20) which inhibits ATR immunoprecipitated from HeLa nuclear extracts with an IC50 of 5 nM and ATR mediated phosphorylation of Chk1 in HT29 colorectal adenocarcinoma tumor cells with an IC50 of 50 nM. Compound 6 potently inhibits the growth of LoVo colorectal adenocarcinoma tumor cells in vitro and has high free exposure in mouse following moderate oral doses. At well tolerated doses 6 leads to significant growth inhibition of LoVo xenografts grown in nude mice. Compound 6 is a useful compound to explore ATR pharmacology in vivo.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Morpholines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemical synthesis , Animals , Antineoplastic Agents/therapeutic use , Ataxia Telangiectasia Mutated Proteins , Crystallography, X-Ray , Drug Discovery , Female , HeLa Cells , Humans , Mice , Models, Molecular , Morpholines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Structure-Activity Relationship , Xenograft Model Antitumor Assays
15.
Bioorg Med Chem Lett ; 22(12): 4163-8, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22607682

ABSTRACT

High throughput screening to identify inhibitors of the mTOR kinase revealed sulfonyl-morpholino-pyrimidine 1 as an attractive start point. The compound displayed good physicochemical properties and selectivity over related kinases such as PI3Kα. Library preparation of related analogs allowed the establishment of additional SAR understanding and in particular the requirement for a key hydrogen bond donor motif at the 4-position of the phenyl ring in compounds such as indole 19. Isosteric replacement of the indole functionality led to the identification of urea compounds such as 32 that show good levels of mTOR inhibition in both enzyme and cellular assays.


Subject(s)
Antineoplastic Agents/chemical synthesis , Morpholines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Pyrimidines/chemical synthesis , Sulfones/chemical synthesis , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Biological Availability , Cell Line, Tumor , Humans , Hydrogen Bonding , Indoles/chemistry , Inhibitory Concentration 50 , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship , Sulfones/pharmacology , TOR Serine-Threonine Kinases/chemistry , Urea/analogs & derivatives , Urea/chemistry
16.
J Med Chem ; 55(3): 1261-73, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-22248236

ABSTRACT

Wide-ranging exploration of potential replacements for a quinoline-based inhibitor of activation of AKT kinase led to number of alternative, novel scaffolds with potentially improved potency and physicochemical properties. Examples showed predictable DMPK properties, and one such compound demonstrated pharmacodynamic knockdown of phosphorylation of AKT and downstream biomarkers in vivo and inhibition of tumor growth in a breast cancer xenograft model.


Subject(s)
Heterocyclic Compounds, 3-Ring/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Allosteric Regulation , Animals , Biological Availability , Biomarkers/metabolism , Cell Line, Tumor , Drug Screening Assays, Antitumor , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Mice , Mice, Nude , Models, Molecular , Neoplasm Transplantation , Proto-Oncogene Proteins c-akt/metabolism , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridazines/chemical synthesis , Pyridazines/chemistry , Pyridazines/pharmacology , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacology , Quinazolines/chemical synthesis , Quinazolines/chemistry , Quinazolines/pharmacology , Rats , Structure-Activity Relationship , Transplantation, Heterologous
17.
Org Biomol Chem ; 7(4): 678-86, 2009 Feb 21.
Article in English | MEDLINE | ID: mdl-19194583

ABSTRACT

Bicalutamide, a therapeutically important anti-androgen used in the treatment of hormone-sensitive cancers, may be synthesised from the appropriate halohydrin or epoxide. We report here studies aimed at demonstrating unambiguously that preparation of bicalutamide and its thioether analogue from the chlorohydrin under basic conditions proceeds via opening of an intermediate epoxide by the appropriate sulfinate or thiolate nucleophile, that the analogous anionic sulfur nucleophiles react under the same conditions and that the S(N)2 pathway involving direct displacement of chloride by the nucleophile does not operate. The proposed mechanism is confirmed by the quantitative fitting of sequential reaction kinetics, taking into account the competing dimerisation of the thiolate nucleophile that occurs under basic conditions. The O-methyl analogue of the chlorohydrin is unreactive towards thiolate under the same conditions, although a slower cyclisation to the beta-lactam was observed. The implications of these observations for the analogous preparation of thioethers and sulfones are discussed.


Subject(s)
Anilides/chemical synthesis , Nitriles/chemical synthesis , Tosyl Compounds/chemical synthesis , Androgen Antagonists , Antineoplastic Agents , Epoxy Compounds/chemistry , Sulfides/chemical synthesis , Sulfones/chemical synthesis
18.
Org Biomol Chem ; 3(1): 107-11, 2005 Jan 07.
Article in English | MEDLINE | ID: mdl-15602604

ABSTRACT

Amination of C-H bonds activated by ether oxygen atoms is facile with chloramine-T as nitrene source and copper(I) chloride in acetonitrile as catalyst. For cyclic ethers the hemiaminal products are generally stable and can be isolated pure. For acyclic ethers, the hemiaminal products, as expected, fragment with elimination of alcohol to yield imines. When activation of benzylic positions is remote through a conjugated system, stable benzylamine derivatives are isolated. Mechanistic studies are consistent with concerted insertion of an electrophilic nitrenoid into the C-H bond in the rate-determining step, though in an asynchronous manner with a more activated substrate.


Subject(s)
Chloramines/chemistry , Copper/chemistry , Ethers/chemical synthesis , Tosyl Compounds/chemistry , Amination , Catalysis , Ethers/chemistry , Molecular Structure , Stereoisomerism
19.
Bioorg Med Chem Lett ; 15(1): 25-8, 2005 Jan 03.
Article in English | MEDLINE | ID: mdl-15582404

ABSTRACT

Investigation of weak screening hits led to the identification of N-alkyl-N-[1-(3,3-diphenylpropyl)piperidin-4-yl]-2-phenylacetamides and N-alkyl-N-[1-(3,3-diphenylpropyl)piperidin-4-yl]-N'-benzylureas as potent, selective ligands for the human CCR5 chemokine receptor.


Subject(s)
Amides/chemistry , Piperidines/pharmacology , Receptors, CCR5/drug effects , Urea/chemistry , Humans , Piperidines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...