Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Protist ; 175(3): 126035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688055

ABSTRACT

The protist Euglena gracilis has various trophic modes including heterotrophy and photoheterotrophy. To investigate how cultivation mode influences metabolic regulation, the chemical composition of cellular metabolites of Euglena gracilis grown under heterotrophic and photoheterotrophic conditions was monitored from the early exponential phase to the mid-stationary phase using two different techniques, i.e, nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS). The combined metabolomics approach allowed an in-depth understanding of the mechanism of photoheterotrophic and heterotrophic growth for biomolecule production. Heterotrophic conditions promoted the production of polar amino and oxygenated compounds such as proteins and polyphenol compounds, especially at the end of the exponential phase while photoheterotrophic cells enhanced the production of organoheterocyclic compounds, carbohydrates, and alkaloids.


Subject(s)
Euglena gracilis , Heterotrophic Processes , Euglena gracilis/metabolism , Euglena gracilis/growth & development , Phototrophic Processes , Magnetic Resonance Spectroscopy , Mass Spectrometry , Metabolomics , Metabolome
2.
Biochim Biophys Acta Biomembr ; 1862(10): 183379, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32473826

ABSTRACT

We present a new membrane mimetic system using a membrane softening detergent commonly known as Tween 80 (TW80), to form oriented systems for solid-state NMR applications. TW80 is a fatty acid ester (oleate) of sorbitan polyethoxylate and a mild non-ionic surfactant. Phosphatidylcholine (PC)/TW80 model membrane systems were characterized by solid-state NMR and FTIR spectroscopy. 31P and 2H NMR spectra showed that DMPC (14:0) and DPPC (16:0) self-assemble with TW80 to form oriented structures, and maintain alignment over a wide range of molar ratios and temperatures. The addition of lanthanide ions revealed that the membrane alignment can be flipped from parallel to perpendicular with respect to the magnetic field direction. Using 15N solid-state NMR and a labeled model transmembrane peptide, we showed that TW80-based membranes can be employed to determine the peptide orientation in the magnetic field, which is useful for structural determination. Altogether, our work showed that TW80 could be exploited for direct and efficient membrane protein extraction and to enhance membrane and membrane protein orientation without using a detergent removal step. This approach could be extended to a wide range of membranes including native ones.


Subject(s)
Membranes, Artificial , Models, Chemical , Nuclear Magnetic Resonance, Biomolecular/methods , Polysorbates/chemistry , Proteins/chemistry , Amino Acid Sequence
3.
Biochemistry ; 55(49): 6919-6930, 2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27951656

ABSTRACT

Cationic antimicrobial peptides are a component of the innate immune system of several organisms and represent an interesting alternative to fight multiresistant bacteria. In this context, we have elaborated a synthetic peptide scaffold allowing the study of the impact of different molecular determinants on the membrane interactions. The aim of the present study was to elucidate the mechanism of action of two cationic peptides that derive from a neutral 14-mer template peptide and where the hydrophilic portion is composed of a crown ether. The R5R10 peptide is active in the presence of both negatively charged and zwitterionic membranes (nonselective) and adopts an α-helical conformation, whereas the R4R11 peptide is more active in the presence of negatively charged membranes (selective) and forms intermolecular ß-sheet structures. Both the membrane topology and the location of the peptides have been assessed using solid-state NMR and attenuated total reflectance Fourier transform infrared spectroscopy. In addition, fluorescence experiments have been performed on different membrane mixtures to evaluate the ability of the peptides to induce a positive curvature to the membrane. Overall, for both the R5R10 and R4R11 peptides, the results are consistent with a mechanism of action similar to the sinking-raft model in which the peptides are mainly lying flat on the membrane surface and impose a bending stress to the membrane, thus leading to the formation of pores. Furthermore, the difference of membrane selectivity between R5R10 and R4R11 peptides is due to their differing amphipathic properties which modulate the membrane activity on zwitterionic model membranes.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Cell Membrane/chemistry , Cations
4.
Biochemistry ; 54(25): 3932-41, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26057537

ABSTRACT

Thanatin is a cationic 21-residue antimicrobial and antifongical peptide found in the spined soldier bug Podisus maculiventris. It is believed that it does not permeabilize membranes but rather induces the agglutination of bacteria and inhibits cellular respiration. To clarify its mode of action, lipid vesicle organization and aggregation propensity as well as peptide secondary structure have been studied using different membrane models. Dynamic light scattering and turbidimetry results show that specific mixtures of negatively charged and zwitterionic phospholipid vesicles are able to mimic the agglutination effect of thanatin observed on Gram-negative and Gram-positive bacterial cells, while monoconstituent ("conventional") models cannot reproduce this phenomenon. The model of eukaryotic cell reveals no particular interaction with thanatin, which is consistent with the literature. Infrared spectroscopy shows that under the conditions under which vesicle agglutination occurs, thanatin exhibits a particular spectral pattern in the amide I' region and in the region associated with Arg side chains. The data suggest that thanatin mainly retains its hairpin structure, Arg residues being involved in strong interactions with anionic groups of phospholipids. In the absence of vesicle agglutination, the peptide conformation and Arg side-chain environment are similar to those observed in solution. The data show that a negatively charged membrane is required for thanatin to be active, but this condition is insufficient. The activity of thanatin seems to be modulated by the charge surface density of membranes and thanatin concentration.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Cell Membrane/chemistry , Phospholipids/chemistry , Agglutination , Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/drug effects , Cell Membrane/metabolism , Models, Biological , Phospholipids/metabolism
5.
Biophys Rev ; 7(3): 311-320, 2015 Sep.
Article in English | MEDLINE | ID: mdl-28510228

ABSTRACT

Overuse and misuse of antibiotics have led bacteria to acquire several mechanisms of resistance. In response to this, researchers have identified natural antimicrobial peptides as promising candidates to fight against multiresistant bacteria. However, their mode of action is still unclear, and a better understanding of the mode of action of these peptides is of primary importance to develop new peptides displaying high antibacterial activity and low hemolytic activity. One of the main features that defines the mechanism of action is the membrane topology of the peptide. Among the spectroscopic techniques, solid-state NMR is the technique of choice for determining the location of the peptide within the membrane. It can be achieved by performing experiments with oriented samples. In the literature, the two most common types of oriented samples are bicelles and phospholipids mechanically oriented between glass plates. The mode of perturbation of the membrane-active peptide can be studied by phosphorus-31 and deuterium NMR. On the other hand, several experiments such as nitrogen-15 and fluorine solid-state NMR, that require labeled peptides, can give valuable information on the membrane topology of the peptide. The combination of the latter techniques allows the determination of a precise topology, thus a better knowledge of the molecular determinants involved in the membrane interactions of antimicrobial peptides.

6.
Probiotics Antimicrob Proteins ; 7(1): 66-74, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25422123

ABSTRACT

Cationic antimicrobial peptides are considered promising candidates to complement currently used antibiotics, which are less effective against increasingly resistant pathogens. To determine the mechanism of action of these peptides, a better understanding of each molecular determinant involved in their membrane interactions is of great importance. In this study, we have focused on the role of electrostatic interactions and amphiphilicity on the membrane interactions since the large majority of natural antimicrobial peptides are cationic. Therefore, cationic and anionic peptides have been prepared based on a model 14-mer peptide. The latter is a synthetic peptide composed of ten leucines and four phenylalanines, which are modified by the addition of the crown ether. Infrared spectroscopy results indicate that the position of substitution is the main determinant involved in the secondary structure adopted by the peptides, and not the charge of the substituted residues. Fluorescence vesicle leakage assays indicate, however, differences between the ability of cationic and anionic peptides to induce calcein release in zwitterionic and anionic lipid vesicles, suggesting an importance of electrostatic interactions and repulsions. Finally, (31)P NMR results indicate that the vesicle morphologies is not significantly affected by the interactions with both cationic and anionic peptides but that their effect on lipid bilayers is mainly determined by their secondary structure. This study therefore indicates that the membrane interactions of model 14-mer peptides are mainly governed by their secondary structure, which depends on the position of substitution, and not the charge of the residues.


Subject(s)
Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Membrane Proteins/chemistry , Static Electricity , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Structure, Secondary , Spectroscopy, Near-Infrared
7.
Biochim Biophys Acta ; 1838(9): 2173-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24508758

ABSTRACT

We have investigated in the present study the effect of both non-selective and selective cationic 14-mer peptides on the lipid orientation of DMPC bilayers by (31)P solid-state nuclear magnetic resonance (NMR) spectroscopy. Depending on the position of substitution, these peptides adopt mainly either an α-helical structure able to permeabilize DMPC and DMPG vesicles (non-selective peptides) or an intermolecular ß-sheet structure only able to permeabilize DMPG vesicles (selective peptides). Several systems have been investigated, namely bilayers mechanically oriented between glass plates as well as bicelles oriented with their normal perpendicular or parallel to the external magnetic field. The results have been compared with spectral simulations with the goal of elucidating the difference in the interaction of these two types of peptides with zwitterionic lipid bilayers. The results indicate that the perturbation induced by selective peptides is much greater than that induced by non-selective peptides in all the lipid systems investigated, and this perturbation has been associated to the aggregation of the selective ß-sheet peptides in these systems. On the other hand, the oriented lipid spectra obtained in the presence of non-selective peptides suggest the presence of toroidal pores. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Lipid Bilayers/chemistry , Peptides/chemistry , Proteins/chemistry , Amino Acid Sequence , Dimyristoylphosphatidylcholine/chemistry , Hydrophobic and Hydrophilic Interactions , Nuclear Magnetic Resonance, Biomolecular , Phosphorus Isotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...