Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
PLoS One ; 15(4): e0231238, 2020.
Article in English | MEDLINE | ID: mdl-32267873

ABSTRACT

Members of the phylum Bathyarchaeota and the class Thermoplasmata are widespread in marine and freshwater sediments where they have been recognized as key players in the carbon cycle. Here, we tested the responsiveness of archaeal communities on settled plant debris and sediment from a karstic lake to different organic carbon amendments (amino acids, plant-derived carbohydrates, and aromatics) using a lab-scale microcosm. Changes in the composition and abundance of sediment and biofilm archaeal communities in both DNA and RNA fractions were assessed by 16S rRNA gene amplicon sequencing and qPCR, respectively, after 7 and 30 days of incubation. Archaeal communities showed compositional changes in terms of alpha and beta diversity in relation to the type of carbon source (amino acids vs. plant-derived compounds), the nucleic acid fraction (DNA vs. RNA), and the incubation time (7 vs. 30 days). Distinct groups within the Bathyarchaeota (Bathy-15 and Bathy-6) and the Thermoplasmata (MBG-D) differently reacted to carbon supplements as deduced from the analysis of RNA libraries. Whereas Bathyarchaeota in biofilms showed a long-term positive response to humic acids, their counterparts in the sediment were mainly stimulated by the addition of tryptophan, suggesting the presence of different subpopulations in both habitats. Overall, our work presents an in vitro assessment of the versatility of archaea inhabiting freshwater sediments towards organic carbon and introduces settled leaf litter as a new habitat for the Bathyarchaeota and the Thermoplasmata.


Subject(s)
Carbon Cycle/physiology , Crenarchaeota/genetics , Crenarchaeota/metabolism , Euryarchaeota/genetics , Euryarchaeota/metabolism , Geologic Sediments , Lakes , Biodiversity , Biofilms , Carbon/metabolism , DNA, Archaeal/genetics , Ecosystem , Humic Substances , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Tryptophan
2.
Microb Ecol ; 74(4): 776-787, 2017 11.
Article in English | MEDLINE | ID: mdl-28508926

ABSTRACT

Archaea inhabiting marine and freshwater sediments have a relevant role in organic carbon mineralization, affecting carbon fluxes at a global scale. Despite current evidences suggesting that freshwater sediments largely contribute to this process, few large-scale surveys have been addressed to uncover archaeal diversity and abundance in freshwater sedimentary habitats. In this work, we quantified and high-throughput sequenced the archaeal 16S rRNA gene from surficial sediments collected in 21 inland waterbodies across the Iberian Peninsula differing in typology and trophic status. Whereas methanogenic groups were dominant in most of the studied systems, especially in organic-rich sediments, archaea affiliated to widespread marine lineages (the Bathyarchaeota and the Thermoplasmata) were also ubiquitous and particularly abundant in euxinic sediments. In these systems, Bathyarchaeota communities were dominated by subgroups Bathyarchaeota-6 (87.95 ± 12.71%) and Bathyarchaeota-15 (8.17 ± 9.2%) whereas communities of Thermoplasmata were mainly composed of members of the order Thermoplasmatales. Our results also indicate that Archaea accounted for a minor fraction of sedimentary prokaryotes despite remarkable exceptions in reservoirs and some stratified lakes. Copy numbers of archaeal and bathyarchaeotal 16S rRNA genes were significantly different when compared according to system type (i.e., lakes, ponds, and reservoirs), but no differences were obtained when compared according to their trophic status (from oligotrophy to eutrophy). Interestingly, we obtained significant correlations between the abundance of reads (Spearman r = 0.5, p = 0.021) and OTU richness (Spearman r = 0.677, p < 0.001) of Bathyarchaeota and Thermoplasmata across systems, reinforcing the hypothesis of a potential syntrophic interaction between members of both lineages.


Subject(s)
Archaea/physiology , Geologic Sediments/microbiology , Microbiota , Aquatic Organisms/classification , Aquatic Organisms/genetics , Aquatic Organisms/physiology , Archaea/classification , Archaea/genetics , DNA, Archaeal/genetics , Lakes/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain
3.
ISME J ; 10(3): 665-77, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26284443

ABSTRACT

Members of the archaeal Miscellaneous Crenarchaeotic Group (MCG) are among the most successful microorganisms on the planet. During its evolutionary diversification, this very diverse group has managed to cross the saline-freshwater boundary, one of the most important evolutionary barriers structuring microbial communities. However, the current understanding on the ecological significance of MCG in freshwater habitats is scarce and the evolutionary relationships between freshwater and saline MCG remains poorly known. Here, we carried out molecular phylogenies using publicly available 16S rRNA gene sequences from various geographic locations to investigate the distribution of MCG in freshwater and saline sediments and to evaluate the implications of saline-freshwater transitions during the diversification events. Our approach provided a robust ecological framework in which MCG archaea appeared as a core generalist group in the sediment realm. However, the analysis of the complex intragroup phylogeny of the 21 subgroups currently forming the MCG lineage revealed that distinct evolutionary MCG subgroups have arisen in marine and freshwater sediments suggesting the occurrence of adaptive evolution specific to each habitat. The ancestral state reconstruction analysis indicated that this segregation was mainly due to the occurrence of a few saline-freshwater transition events during the MCG diversification. In addition, a network analysis showed that both saline and freshwater MCG recurrently co-occur with archaea of the class Thermoplasmata in sediment ecosystems, suggesting a potentially relevant trophic connection between the two clades.


Subject(s)
Biological Evolution , Ecosystem , Euryarchaeota/genetics , Fresh Water/microbiology , Euryarchaeota/classification , Euryarchaeota/isolation & purification , Molecular Sequence Data , Phylogeny
4.
FEMS Microbiol Ecol ; 91(4)2015 Apr.
Article in English | MEDLINE | ID: mdl-25764468

ABSTRACT

The Miscellaneous Crenarchaeotic Group (MCG) is an archaeal lineage whose members are widespread and abundant in marine sediments. MCG archaea have also been consistently found in stratified euxinic lakes. In this work, we have studied archaeal communities in three karstic lakes to reveal potential habitat segregation of MCG subgroups between planktonic and sediment compartments. In the studied lakes, archaeal assemblages were strikingly similar to those of the marine subsurface with predominance of uncultured Halobacteria in the plankton and Thermoplasmata and MCG in anoxic, organic-rich sediments. Multivariate analyses identified sulphide and dissolved organic carbon as predictor variables of archaeal community composition. Quantification of MCG using a newly designed qPCR primer pair that improves coverage for MCG subgroups prevalent in the studied lakes revealed conspicuous populations in both the plankton and the sediment. Subgroups MCG-5a and -5b appear as planktonic specialists thriving in euxinic bottom waters, while subgroup MCG-6 emerges as a generalist group able to cope with varying reducing conditions. Besides, comparison of DNA- and cDNA-based pyrotag libraries revealed that rare subgroups in DNA libraries, i.e. MCG-15, were prevalent in cDNA-based datasets, suggesting that euxinic, organic-rich sediments of karstic lakes provide optimal niches for the activity of some specialized MCG subgroups.


Subject(s)
Crenarchaeota/genetics , Euryarchaeota/genetics , Geologic Sediments/microbiology , Lakes/microbiology , Base Sequence , Crenarchaeota/growth & development , Crenarchaeota/isolation & purification , DNA, Archaeal/genetics , Euryarchaeota/growth & development , Euryarchaeota/isolation & purification , Gene Library , Molecular Sequence Data , Phylogeny , Plankton/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Int. microbiol ; 16(3): 177-189, sept. 2013. ilus
Article in English | IBECS | ID: ibc-118208

ABSTRACT

A microcosm cultivation-based method was set up to investigate the growth of ammonia-oxidizing archaea (AOA), isolated from a water sample acquired at a depth of 50 m from the northern basin of Lake Kivu. For this purpose, both CARD-FISH and qPCR targeting of archaeal 16S rRNA and amoA genes were used. Archaeal cell growth at the end of the 246-day microcosm experiment accounted for 35% of the SybrGold-stained cells, which corresponded to 6.61 x 10(6) cells/ml and 1.76 +/- 0.09 x 10(6) archaeal 16S rRNA gene copies/ml. Clone libraries and DGGE fingerprinting confirmed the dominance of AOA phylotypes in the archaeal community microcosm. The majority of the identified archaeal 16S rRNA gene sequences in the clone libraries were affiliated with Thaumarchaeota Marine Group 1 .1a. Subsequent cultivation of the AOA community on deep-well microtiter plates in medium containing different carbon sources to stimulate archaeal growth failed to show significant differences in archaeal abundance (ANOVA t14 = -1.058, P = 0.308 and ANOVA t14= 1.584, P = 0.135 for yeast extract and simple organic acids, respectively). The lack of growth stimulation by organic compounds is in concordance with the oligotrophic status of Lake Kivu. Finally, the addition of antibiotics to the growth medium resulted in archaeal cell counts that were significantly lower than those obtained from cultures in antibiotic-free medium (ANOVA t14 = 12.12, P < 0.001) (AU)


No disponible


Subject(s)
Phylogeny , Ammonia , Wet Oxidation/analysis , Archaea/growth & development , Bacteria/growth & development , Mixed Function Oxygenases/analysis , Water Microbiology
6.
Int Microbiol ; 16(3): 177-89, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24568033

ABSTRACT

A microcosm cultivation-based method was set up to investigate the growth of ammonia-oxidizing archaea (AOA), isolated from a water sample acquired at a depth of 50 m from the northern basin of Lake Kivu. For this purpose, both CARD-FISH and qPCR targeting of archaeal 16S rRNA and amoA genes were used. Archaeal cell growth at the end of the 246-day microcosm experiment accounted for 35% of the SybrGold-stained cells, which corresponded to 6.61 x 10(6) cells/ml and 1.76 +/- 0.09 x 10(6) archaeal 16S rRNA gene copies/ml. Clone libraries and DGGE fingerprinting confirmed the dominance of AOA phylotypes in the archaeal community microcosm. The majority of the identified archaeal 16S rRNA gene sequences in the clone libraries were affiliated with Thaumarchaeota Marine Group 1 .1a. Subsequent cultivation of the AOA community on deep-well microtiter plates in medium containing different carbon sources to stimulate archaeal growth failed to show significant differences in archaeal abundance (ANOVA t14 = -1.058, P = 0.308 and ANOVA t14= 1.584, P = 0.135 for yeast extract and simple organic acids, respectively). The lack of growth stimulation by organic compounds is in concordance with the oligotrophic status of Lake Kivu. Finally, the addition of antibiotics to the growth medium resulted in archaeal cell counts that were significantly lower than those obtained from cultures in antibiotic-free medium (ANOVA t14 = 12.12, P < 0.001).


Subject(s)
Ammonia/metabolism , Archaea/classification , Archaea/metabolism , Bacteria/classification , Bacteria/metabolism , Lakes/microbiology , Phylogeny , Archaea/genetics , Archaea/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/genetics , Lakes/chemistry , Molecular Sequence Data , Oxidation-Reduction , Oxidoreductases/genetics , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...