Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Electrophoresis ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794987

ABSTRACT

In forensic science, the demand for precision, consistency, and cost-effectiveness has driven the exploration of next-generation sequencing technologies. This study investigates the potential of Oxford Nanopore Sequencing (ONT) Technology for analyzing the HIrisPlex-S panel, a set of 41 single nucleotide polymorphism (SNP) markers used to predict eye, hair, and skin color. Using ONT sequencing, we assessed the accuracy and reliability of ONT-generated data by comparing it with conventional capillary electrophoresis (CE) in 18 samples. The Guppy v6.1 was used as a basecaller, and sample profiles were obtained using Burrows-Wheeler Aligner, Samtools, BCFtools, and Python. Comparing accuracy with CE, we found that 62% of SNPs in ONT-unligated samples were correctly genotyped, with 36% showing allele dropout, and 2% being incorrectly genotyped. In the ONT-ligated samples, 85% of SNPs were correctly genotyped, with 10% showing allele dropout, and 5% being incorrectly genotyped. Our findings indicate that ONT, particularly when combined with ligation, enhances genotyping accuracy and coverage, thereby reducing allele dropouts. However, challenges associated with the technology's error rates and the impact on genotyping accuracy are recognized. Phenotype predictions based on ONT data demonstrate varying degrees of success, with the technology showing high accuracy in several cases. Although ONT technology holds promise in forensic genetics, further optimization and quality control measures are essential to harness its full potential. This study contributes to the ongoing efforts to refine sequence read tuning and improve correction tools in the context of ONT technology's application in forensic genetics.

2.
Article in English | MEDLINE | ID: mdl-38568352

ABSTRACT

There may be cases where malignant tumor samples can be used for forensic DNA profiling studies. STRs are the first systems preferred in forensic science laboratories for identification purposes. However, genetic instability in tumoral tissues causes STR polymorphism to change, leading to erroneous results. On the other hand, insertion/deletion polymorphism (InDels) are used as genetic markers in forensic science, as they have features that make both STR and SNPs preferable. Although previous studies approved that STR instability is observed in many different tumors, there are only a few studies that have displayed the instability of InDels in tumoral tissues before. In this study, it was aimed to determine whether instability is observed in formalin-fixed paraffin-embedded breast and thyroid tumoral tissues at 36plex InDel Panel. A total of 47 cases, 26 of which were diagnosed as breast cancer and 21 as thyroid cancer, were included in the study. In 21 of 26 (80.76%) breast cancers mutational changes were observed, however only 6 of 21 (28.57%) thyroid carcinoma cases displayed instability.Moreover, in these six cases, mutations were detected at only 1 or 2 loci. The most common change in both tissues was loss of heterozygosity. These findings suggest that paraffin embedded tissues of thyroid tumor can be used in cases of forensic genetic identification, however paraffin embedded breast cancer tissues should be examined with care. In conclusion, low InDel mutation rates compared to STR instability, make InDel analysis from paraffin blocks suitable for forensic genetic identification. However, researchers should keep in mind that there may be differences between the profiles of the tumoral tissues taken as reference and the actual case. In addition, by incorporating additional markers such as SNPs and microhaplotypes with low mutation rates into the study alongside Indels, researchers can significantly enhance the discrimination power in identification processes.

3.
J Forensic Sci ; 69(3): 869-879, 2024 May.
Article in English | MEDLINE | ID: mdl-38308398

ABSTRACT

Aging is a complex process influenced by genetic, epigenetic, and environmental factors that lead to tissue deterioration and frailty. Epigenetic mechanisms, such as DNA methylation, play a significant role in gene expression regulation and aging. This study presents a new age estimation model developed for the Turkish population using blood samples. Eight CpG sites in loci TOM1L1, ELOVL2, ASPA, FHL2, C1orf132, CCDC102B, cg07082267, and RASSF5 were selected based on their correlation with age. Methylation patterns of these sites were analyzed in blood samples from 100 volunteers, grouped into age categories (20-35, 36-55, and ≥56). Sensitivity analysis indicated a reliable performance with DNA inputs ≥1 ng. Statistical modeling, utilizing Multiple Linear Regression, underscores the reliability of the primary 6-CpG model, excluding cg07082267 and TOM1L1. This model demonstrates strong correlations with chronological age (r = 0.941) and explains 88% of the age variance with low error rates (MAE = 4.07, RMSE = 5.73 years). Validation procedures, including a training-test split and fivefold cross-validation, consistently confirm the model's accuracy and consistency. The study indicates minimal variation in error scores across age cohorts and no significant gender differences. The developed model showed strong predictive accuracy, with the ability to estimate age within certain prediction intervals. This study contributes to the age prediction by using DNA methylation patterns, which can have disparate applications, including forensic and clinical assessments.


Subject(s)
Aging , Amidohydrolases , CpG Islands , DNA Methylation , Epigenesis, Genetic , Fatty Acid Elongases , Transcription Factors , Humans , Male , Female , Adult , Middle Aged , Young Adult , Aged , Fatty Acid Elongases/genetics , Linear Models , Turkey , Aged, 80 and over , Forensic Genetics/methods , Reproducibility of Results , Models, Statistical , LIM-Homeodomain Proteins/genetics , Muscle Proteins/genetics
4.
Int J Legal Med ; 138(2): 627-637, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37934208

ABSTRACT

Forensic entomological evidence is employed to estimate minimum postmortem interval (PMImin), location, and identification of fly samples or human remains. Traditional forensic DNA analysis (i.e., STR, mitochondrial DNA) has been used for human identification from the larval gut contents. Forensic DNA phenotyping (FDP), predicting human appearance from DNA-based crime scene evidence, has become an established approach in forensic genetics in the past years. In this study, we aimed to recover human DNA from Lucilia sericata (Meigen 1826) (Diptera: Calliphoridae) gut contents and predict the eye and hair color of individuals using the HIrisPlex system. Lucilia sericata larvae and reference blood samples were collected from 30 human volunteers who were under maggot debridement therapy. The human DNA was extracted from the crop contents and quantified. HIrisPlex multiplex analysis was performed using the SNaPshot minisequencing procedure. The HIrisPlex online tool was used to assess the prediction of the eye and hair color of the larval and reference samples. We successfully genotyped 25 out of 30 larval samples, and the most SNP genotypes (87.13%) matched those of reference samples, though some alleles were dropped out, producing partial profiles. The prediction of the eye colors was accurate in 17 out of 25 larval samples, and only one sample was misclassified. Fourteen out of 25 larval samples were correctly predicted for hair color, and eight were misclassified. This study shows that SNP analysis of L. sericata gut contents can be used to predict eye and hair color of a corpse.


Subject(s)
Diptera , Hair Color , Animals , Humans , Larva/genetics , Diptera/genetics , Genotype , DNA, Mitochondrial/genetics , Eye Color/genetics
5.
Article in English | MEDLINE | ID: mdl-37266863

ABSTRACT

In recent years, the insertion/deletion (InDel) polymorphism has become a preferred genetic marker in forensic genetics due to its low mutation rates and small amplicon sizes. In this study, a 36-InDelplex identification panel, consisting of autosomal 34 InDel loci, 1 Y InDel locus, and amelogenin, was developed, and gene frequencies in the Turkish population were determined. The loci of the InDel panel with global minimum allele frequencies (MAF) ≥ 0.4 were selected from the 1000 Genomes Project Phase 3 data. The amplicon sizes of the loci were designed in the range of 69-252 bp. In the validation study of the developed panel, analysis threshold, dynamic range, sensitivity, stochastic threshold, inhibitor tolerance, and reproducibility parameters were studied by following the Scientific Working Group on DNA Analysis Methods (SWGDAM) guidelines. The sensitivity studies indicated that complete and reliable InDel profiles could be obtained with 0.25 ng of DNA. A population study was evaluated using 250 samples from Turkey. The mean observed heterozygosity ratio (Ho) of all loci was 0.48. The combined discrimination power (CPD) is 0.999999999990867 and the combined exclusion probability (CPE) was 0.9930. The population comparison was also made using Turkish and the five major populations from the 1000 Genomes Phase 3 populations' data (Africa, Europe, East Asia, South Asia, and America). In conclusion, the results showed that the 36-InDelplex panel is a reliable, sensitive, and accurate system that is suitable for human identification and population genetics purposes.

6.
Leg Med (Tokyo) ; 62: 102224, 2023 May.
Article in English | MEDLINE | ID: mdl-36898282

ABSTRACT

InDel (Insertions/deletion) markers have been used as an alternative, or as a complementary marker system, to STR markers in human identification due to their advantages such as low mutation rates, no stutter, and potential small amplicon sizes. In forensic sciences, sex chromosomes are widely used in forensic genetics for specific cases. For example, the relationship between father and daughter can be determined by using X-InDels. In this study, we developed a novel 22 X-InDel multiplex system that was identified by two separate assays with fluorescence amplification and capillary electrophoresis detection technology. We chose 22 X-InDel markers based on the following criteria: mean heterozygosity over 30% in Europeans; minimum of 250 Kb differences between each InDel loci; and an amplicon length that was less than 300 bp. We performed an optimization and validation study of 22 X-InDel systems under the following parameters: analytical threshold, sensitivity, precision and accuracy, stochastic threshold, repeatability, and reproducibility. We evaluated the allele frequency of this multiplex system in the Turkish population, and then the population comparisons were carried out on data from 1000 Genome populations (Europe, Africa, America, South Asia, and East Asia). The sensitivity test showed a complete genotyping profile with DNA concentrations as low as 0.5 ng. The heterozygosity ratio of 22 X-InDel loci was determined as 0.4690 and the discrimination power was defined as 0.99. The results show that the new 22 X-InDel multiplex system provides high polymorphism information, and it is a reproducible, accurate, sensitive, and robust system that could be used as an additional tool for kinship testing.


Subject(s)
Forensic Genetics , Polymorphism, Genetic , Humans , Forensic Genetics/methods , Reproducibility of Results , Gene Frequency , INDEL Mutation
7.
Genes (Basel) ; 13(11)2022 11 11.
Article in English | MEDLINE | ID: mdl-36421769

ABSTRACT

Forensic DNA Phenotyping (FDP) can reveal the appearance of an unknown individual by predicting the ancestry, phenotype (i.e., hair, eye, skin color), and age from DNA obtained at the crime scene. The HIrisPlex system has been developed to simultaneously predict eye and hair color. However, the prediction accuracy of the system needs to be assessed for the tested population before implementing FDP in casework. In this study, we evaluated the performance of the HIrisPlex system on 149 individuals from the Turkish population. We applied the single-based extension (SNaPshot chemistry) method and used the HIrisPlex online tool to test the prediction of the eye and hair colors. The accuracy of the HIrisPlex system was assessed through the calculation of the area under the receiver characteristic operating curves (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The results showed that the proposed method successfully predicted the eye and hair color, especially for blue (100%) and brown (95.60%) eye and black (95.23) and brown (98.94) hair colors. As observed in previous studies, the system failed to predict intermediate eye color, representing 25% in our cohort. The majority of incorrect predictions were observed for blond hair color (40.7%). Previous HIrisPlex studies have also noted difficulties with these phenotypes. Our study shows that the HIrisPlex system can be applied to forensic casework in Turkey with careful interpretation of the data, particularly intermediate eye color and blond hair color.


Subject(s)
Hair Color , Polymorphism, Single Nucleotide , Hair Color/genetics , Turkey , Genotype , DNA/genetics
8.
Electrophoresis ; 39(21): 2743-2751, 2018 11.
Article in English | MEDLINE | ID: mdl-30091798

ABSTRACT

Inferring ancestry and physical characteristics of an unknown individual can contribute to the direction of the investigation and to clarify the event for unknown contributors, cold cases or identification of missing persons and disaster victims. The objective of this study is to develop a custom SNP panel on massively parallel sequencing devices for predicting the biogeographic ancestry and phenotype of an individual. We focused on a two-tier approach to enhance ancestry. Our MPS panel contains two ancestry informative SNP (AISNPs) panels (i.e., Kidd 55 and SWA panel) to differentiate Southwest Asia from Europe and other continental regions. Then we integrated the set of phenotype informative SNPs into a set of AISNPs. The final set of 156 SNPs was evaluated on the following: sensitivity, genotype concordance, mixtures, ancestry assignment, and phenotype prediction. SNP rs6599400 had consistently poor performance and was removed from further analyses. The extreme mixture (1:10) was difficult to interpret for minor contributor. Ancestry assignment and phenotype predictions (for eye, hair and skin) were accurate for samples' population origin. The results show that the developed panel provides high coverage data that can be used for inferring ancestry and predicting eye, hair, and skin color from the intermediate population regions.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Phenotype , Polymorphism, Single Nucleotide , Asia, Western , Asian People/genetics , DNA/genetics , Europe , Gene Library , Genetics, Population , Humans , White People/genetics
9.
Forensic Sci Int Genet ; 19: 269-271, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26355664

ABSTRACT

Ancestry inference for a person using a panel of SNPs depends on the variation of frequencies of those SNPs around the world and the amount of reference data available for calculation/comparison. The Kidd Lab panel of 55 AISNPs has been incorporated in commercial kits by both Life Technologies and Illumina for massively parallel sequencing. Therefore, a larger set of reference populations will be useful for researchers using those kits. We have added reference population allele frequencies for 52 population samples to the 73 previously entered so that there are now allele frequencies publicly available in ALFRED and FROG-kb for a total of 125 population samples.


Subject(s)
Genetics, Population , DNA/genetics , Databases, Genetic , Humans , Polymorphism, Single Nucleotide
11.
Environ Monit Assess ; 149(1-4): 323-7, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18283549

ABSTRACT

Legionella pneumophila (L. pneumophila) which is also known as etiologic agent Legionnaires Disease lives in natural water and man made water systems. These bacteria belonging to Legionellaceae family are divided 15 serogroups. Phenotypical methods used for the identification of Legionella isolates are not very discriminatory. In this study we investigated genotypic features of eight L. pneumophila serogroup 1 and 18 L. pneumophila serogroup 2-14 strains isolated from different buildings in Istanbul by randomly amplified polymorphic DNA (RAPD) method. Eight L. pneumophila serogroup 1 strains (37.5%) were similar RAPD profile and they were isolated from buildings located in a short distance (about 500 m). Four L. pneumophila serogroup 2-14 strains (22%) were identical genotypically. Three of these strains were isolated from buildings located in a short distance.


Subject(s)
Legionella pneumophila/genetics , Random Amplified Polymorphic DNA Technique , Water Supply , Architecture , Humans , Legionella pneumophila/classification , Legionnaires' Disease/microbiology , Serotyping
SELECTION OF CITATIONS
SEARCH DETAIL
...