Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Theor Appl Genet ; 137(2): 48, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345612

ABSTRACT

KEY MESSAGE: Characterisation and genetic mapping of a key gene defining root morphology in bread wheat. Root morphology is central to plants for the efficient uptake up of soil water and mineral nutrients. Here we describe a conditional mutant of hexaploid wheat (Triticum aestivum L.) that when grown in soil with high Ca2+ develops a larger rhizosheath accompanied with shorter roots than the wild type. In wheat, rhizosheath size is a reliable surrogate for root hair length and this was verified in the mutant which possessed longer root hairs than the wild type when grown in high Ca2+ soil. We named the mutant Stumpy and showed it to be due to a single semi-dominant mutation. The short root phenotype at high Ca2+ was due to reduced cellular elongation which might also explain the long root hair phenotype. Analysis of root cell walls showed that the polysaccharide composition of Stumpy roots is remodelled when grown at non-permissive (high) Ca2+ concentrations. The mutation mapped to chromosome 7B and sequencing of the 7B chromosomes in both wild type and Stumpy identified a candidate gene underlying the Stumpy mutation. As part of the process to determine whether the candidate gene was causative, we identified wheat lines in a Cadenza TILLING population with large rhizosheaths but accompanied with normal root length. This finding illustrates the potential of manipulating the gene to disconnect root length from root hair length as a means of developing wheat lines with improved efficiency of nutrient and water uptake. The Stumpy mutant will be valuable for understanding the mechanisms that regulate root morphology in wheat.


Subject(s)
Soil , Triticum , Triticum/metabolism , Mutation , Chromosome Mapping , Water/metabolism , Plant Roots/genetics
2.
Biofactors ; 50(3): 558-571, 2024.
Article in English | MEDLINE | ID: mdl-38149762

ABSTRACT

Erythrocytes play a fundamental role in oxygen delivery to tissues and binding to inflammatory mediators. Evidences suggest that dysregulated erythrocyte function could contribute to the pathophysiology of several neurodegenerative diseases. We aimed to evaluate changes in morphological, biomechanical, and biophysical properties of erythrocytes from amyotrophic lateral sclerosis (ALS) patients, as new areas of study in this disease. Blood samples were collected from ALS patients, comparing with healthy volunteers. Erythrocytes were assessed using atomic force microscopy (AFM) and zeta potential analysis. The patients' motor and respiratory functions were evaluated using the revised ALS Functional Rating Scale (ALSFRS-R) and percentage of forced vital capacity (%FVC). Patient survival was also assessed. Erythrocyte surface roughness was significantly smoother in ALS patients, and this parameter was a predictor of faster decline in ALSFRS-R scores. ALS patients exhibited higher erythrocyte stiffness, as indicated by reduced AFM tip penetration depth, which predicted a faster ALSFRS-R score and respiratory subscore decay. A lower negative charge on the erythrocyte membrane was predictor of a faster ALSFRS-R and FVC decline. Additionally, a larger erythrocyte surface area was an independent predictor of lower survival. These changes in morphological and biophysical membrane properties of ALS patients' erythrocytes, lead to increased cell stiffness and morphological variations. We speculate that these changes might precipitate motoneurons dysfunction and accelerate disease progression. Further studies should explore the molecular alterations related to these observations. Our findings may contribute to dissect the complex interplay between respiratory function, tissue hypoxia, progression rate, and survival in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Erythrocytes , Microscopy, Atomic Force , Humans , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/mortality , Amyotrophic Lateral Sclerosis/blood , Female , Middle Aged , Male , Erythrocytes/metabolism , Erythrocytes/pathology , Aged , Surface Properties , Erythrocyte Membrane/metabolism , Adult , Vital Capacity , Disease Progression
3.
Commun Biol ; 6(1): 192, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36801914

ABSTRACT

Erythrocytes are deformable cells that undergo progressive biophysical and biochemical changes affecting the normal blood flow. Fibrinogen, one of the most abundant plasma proteins, is a primary determinant for changes in haemorheological properties, and a major independent risk factor for cardiovascular diseases. In this study, the adhesion between human erythrocytes is measured by atomic force microscopy (AFM) and its effect observed by micropipette aspiration technique, in the absence and presence of fibrinogen. These experimental data are then used in the development of a mathematical model to examine the biomedical relevant interaction between two erythrocytes. Our designed mathematical model is able to explore the erythrocyte-erythrocyte adhesion forces and changes in erythrocyte morphology. AFM erythrocyte-erythrocyte adhesion data show that the work and detachment force necessary to overcome the adhesion between two erythrocytes increase in the presence of fibrinogen. The changes in erythrocyte morphology, the strong cell-cell adhesion and the slow separation of the two cells are successfully followed in the mathematical simulation. Erythrocyte-erythrocyte adhesion forces and energies are quantified and matched with experimental data. The changes observed on erythrocyte-erythrocyte interactions may give important insights about the pathophysiological relevance of fibrinogen and erythrocyte aggregation in hindering microcirculatory blood flow.


Subject(s)
Erythrocytes , Fibrin Tissue Adhesive , Humans , Fibrin Tissue Adhesive/metabolism , Fibrin Tissue Adhesive/pharmacology , Microcirculation , Erythrocytes/metabolism , Fibrinogen/metabolism , Models, Theoretical
4.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36674863

ABSTRACT

Malaria remains a major world public health problem, contributing to poverty and inequality. It is urgent to find new efficacious tools with few adverse effects. Malaria has selected red blood cell (RBC) alterations linked to resistance against infection, and understanding the protective mechanisms involved may be useful for developing host-directed tools to control Plasmodium infection. Pyruvate kinase deficiency has been associated with resistance to malaria. Pyruvate kinase-deficient RBCs display an increased concentration of 2,3-diphosphoglycerate (2,3-DPG). We recently showed that 2,3-DPG impacts in vitro intraerythrocytic parasite growth, induces a shift of the metabolic profile of infected cells (iRBCs), making it closer to that of noninfected ones (niRBCs), and decreases the number of parasite progenies that invade new RBCs. As an increase of 2,3-DPG content may also have an adverse effect on RBC membrane and, consequently, on the parasite invasion, in this study, we explored modifications of the RBC morphology, biomechanical properties, and RBC membrane on Plasmodium falciparum in vitro cultures treated with 2,3-DPG, using atomic force microscopy (AFM)-based force spectroscopy and other experimental approaches. The presence of infection by P. falciparum significantly increased the rigidity of parasitized cells and influenced the morphology of RBCs, as parasitized cells showed a decrease of the area-to-volume ratio. The extracellular addition of 2,3-DPG also slightly affected the stiffness of niRBCs, making it more similar to that of infected cells. It also changed the niRBC height, making the cells appear more elongated. Moreover, 2,3-DPG treatment influenced the cell surface charge, becoming more negative in treated RBCs than in untreated ones. The results indicate that treatment with 2,3-DPG has only a mild effect on RBCs in comparison with the effect of the presence of the parasite on the host cell. 2,3-DPG is an endogenous host metabolite, which may, in the future, originate a new antimalarial tool with few adverse effects on noninfected cells.


Subject(s)
Malaria, Falciparum , Malaria , Humans , 2,3-Diphosphoglycerate/metabolism , Pyruvate Kinase/metabolism , Erythrocytes/metabolism , Malaria/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum , Diphosphoglyceric Acids/metabolism
5.
Mol Ther ; 31(1): 282-299, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36116006

ABSTRACT

Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.


Subject(s)
Huntington Disease , Mice , Humans , Animals , Huntington Disease/drug therapy , Models, Theoretical , Imidazoles/pharmacology , Glycosphingolipids , Disease Models, Animal , Huntingtin Protein/genetics
6.
Pharmaceutics ; 14(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36145584

ABSTRACT

Silicone-based medical devices composed of polydimethylsiloxane (PDMS) are widely used all over the human body (e.g., urinary stents and catheters, central venous catheters stents) with extreme clinical success. Nevertheless, their abiotic surfaces, being prone to microorganism colonization, are often involved in infection occurrence. Improving PDMS antimicrobial properties by surface functionalization with biosurfactants to prevent related infections has been the goal of different works, but studies that mimic the clinical use of these novel surfaces are missing. This work aims at the biofunctional assessment of PDMS functionalized with rhamnolipids (RLs), using translational tests that more closely mimic the clinical microenvironment. Rhamnolipids were covalently bonded to PDMS, and the obtained surfaces were characterized by contact angle modification assessment, ATR-FTIR analysis and atomic force microscopy imaging. Moreover, a parallel flow chamber was used to assess the Staphylococcus aureus antibiofilm activity of the obtained surfaces under dynamic conditions, and an in vitro characterization with human dermal fibroblast cells in both direct and indirect characterization assays, along with an in vivo subcutaneous implantation assay in the translational rabbit model, was performed. A 1.2 log reduction in S. aureus biofilm was observed after 24 h under flow dynamic conditions. Additionally, functionalized PDMS lessened cell adhesion upon direct contact, while supporting a cytocompatible profile, within an indirect assay. The adequacy of the biological response was further validated upon in vivo subcutaneous tissue implantation. An important step was taken towards biofunctional assessment of RLs-functionalized PDMS, reinforcing their suitability for medical device usage and infection prevention.

8.
Front Endocrinol (Lausanne) ; 13: 878634, 2022.
Article in English | MEDLINE | ID: mdl-35784550

ABSTRACT

Aim/Hypothesis: To compare the frequency of diabetic ketoacidosis (DKA) at diagnosis of type 1 diabetes in Italy during the COVID-19 pandemic in 2020 with the frequency of DKA during 2017-2019. Methods: Forty-seven pediatric diabetes centers caring for >90% of young people with diabetes in Italy recruited 4,237 newly diagnosed children with type 1 diabetes between 2017 and 2020 in a longitudinal study. Four subperiods in 2020 were defined based on government-imposed containment measures for COVID-19, and the frequencies of DKA and severe DKA compared with the same periods in 2017-2019. Results: Overall, the frequency of DKA increased from 35.7% (95%CI, 33.5-36.9) in 2017-2019 to 39.6% (95%CI, 36.7-42.4) in 2020 (p=0.008), while the frequency of severe DKA increased from 10.4% in 2017-2019 (95%CI, 9.4-11.5) to 14.2% in 2020 (95%CI, 12.3-16.4, p<0.001). DKA and severe DKA increased during the early pandemic period by 10.4% (p=0.004) and 8% (p=0.002), respectively, and the increase continued throughout 2020. Immigrant background increased and high household income decreased the probability of presenting with DKA (OR: 1.55; 95%CI, 1.24-1.94; p<0.001 and OR: 0.60; 95 CI, 0.41-0.88; p=0.010, respectively). Conclusions/Interpretation: There was an increase in the frequency of DKA and severe DKA in children newly diagnosed with type 1 diabetes during the COVID-19 pandemic in 2020, with no apparent association with the severity of COVID-19 infection severity or containment measures. There has been a silent outbreak of DKA in children during the pandemic, and preventive action is required to prevent this phenomenon in the event of further generalized lockdowns or future outbreaks.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetic Ketoacidosis , Adolescent , COVID-19/diagnosis , COVID-19/epidemiology , Child , Communicable Disease Control , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Diabetic Ketoacidosis/diagnosis , Diabetic Ketoacidosis/epidemiology , Humans , Incidence , Italy/epidemiology , Longitudinal Studies , Pandemics
9.
Front Plant Sci ; 13: 904131, 2022.
Article in English | MEDLINE | ID: mdl-35646011

ABSTRACT

The Commonwealth Scientific and Industrial Research Organisation (CSIRO) cotton breeding program is the sole breeding effort for cotton in Australia, developing high performing cultivars for the local industry which is worth∼AU$3 billion per annum. The program is supported by Cotton Breeding Australia, a Joint Venture between CSIRO and the program's commercial partner, Cotton Seed Distributors Ltd. (CSD). While the Australian industry is the focus, CSIRO cultivars have global impact in North America, South America, and Europe. The program is unique compared with many other public and commercial breeding programs because it focuses on diverse and integrated research with commercial outcomes. It represents the full research pipeline, supporting extensive long-term fundamental molecular research; native and genetically modified (GM) trait development; germplasm enhancement focused on yield and fiber quality improvements; integration of third-party GM traits; all culminating in the release of new commercial cultivars. This review presents evidence of past breeding successes and outlines current breeding efforts, in the areas of yield and fiber quality improvement, as well as the development of germplasm that is resistant to pests, diseases and abiotic stressors. The success of the program is based on the development of superior germplasm largely through field phenotyping, together with strong commercial partnerships with CSD and Bayer CropScience. These relationships assist in having a shared focus and ensuring commercial impact is maintained, while also providing access to markets, traits, and technology. The historical successes, current foci and future requirements of the CSIRO cotton breeding program have been used to develop a framework designed to augment our breeding system for the future. This will focus on utilizing emerging technologies from the genome to phenome, as well as a panomics approach with data management and integration to develop, test and incorporate new technologies into a breeding program. In addition to streamlining the breeding pipeline for increased genetic gain, this technology will increase the speed of trait and marker identification for use in genome editing, genomic selection and molecular assisted breeding, ultimately producing novel germplasm that will meet the coming challenges of the 21st Century.

10.
Ital J Pediatr ; 48(1): 66, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35509062

ABSTRACT

BACKGROUND: Although type 1 diabetes (T1D) represents one of the most common chronic diseases in pediatric age, few studies on the epidemiology of T1D exist globally and the exact prevalence and incidence rates of the disease are unknown. In many countries, including Italy, national registries are missing. METHODS: This study aims to assess T1D incidence in the pediatric population of the Calabria region (southern Italy) in the period 2019-2021. The secondary objective was to describe the main demographical, clinical and immunological features of incident cases. Case ascertainment and all clinical data were assessed by retrospectively reviewing the electronic medical records of children and adolescents diagnosed with diabetes at any Pediatric Diabetes Center belonging to the Rete Diabetologica Calabrese (Calabria Region Diabetes Network), from January 2019 to December 2021. The incidence of T1D was estimated for the entire region and was stratified according to age group (0-4 years, 5-9 years, and 10-14 years) and gender. Standardized incidence ratios for each province in the region were also calculated. RESULTS: The crude incidence of T1D was 20.6/100,000 person/years. Incidence rates were higher among females and children aged 5-9 years. The crude incidence of T1D was higher in the province of Reggio Calabria (26.5/100,000 person-years). The provinces of Crotone, Catanzaro, and Vibo Valentia showed significantly lower standardized incidence ratios. The annual incidence in the region progressively increased by 43% during the study period. CONCLUSIONS: Our study revealed a relatively high incidence in the Calabria region. The marked increasing incidence trend over the past two years could be related to the global impact of the COVID-19 pandemic, but further long-scale population-based studies are needed to confirm these findings.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Adolescent , Child , Diabetes Mellitus, Type 1/complications , Female , Humans , Incidence , Male , Pandemics , Retrospective Studies
11.
Biomater Adv ; 134: 112563, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35525746

ABSTRACT

Controlling bacterial biofilm formation on silicone-based bloodstream catheters is of great concern to prevent related-infections. In this study, rhamnolipids (RLs), glycolipid biosurfactants, specifically a RLs mixture and the purified di-RL (RhaRhaC10:0C10:0) were covalently bonded to silicone with the intention of reaching long-lasting antibiofilm surfaces. RLs mixture and di-RL were identified by an UHPLC-MS method that also allowed the confirmation of compound isolation by automated flash chromatography. Silicone surfaces underwent air-plasma treatment, inducing reactive oxygen radicals able to promote the RLs grafting that was confirmed by contact angle, FTIR-ATR and AFM measurements. The antibiofilm activity towards different Gram positive strains was evaluated by colony forming units (CFU) count and confocal laser microscopy. In addition, protein adsorption and biocompatibility were also investigated. RLs were successfully grafted onto silicone and RLs mixture and RhaRhaC10C10:0 functionalized specimens reduced the biofilm formation over 2.3 log units against methicillin sensitive Staphylococcus aureus. Additionally, a decrease of 1 log unit was observed against methicillin resistant S. aureus and S. epidermidis. Functionalized samples showed cytocompatibility towards human dermal fibroblasts, hemocompatibility and no vascular irritation potential. The results mentioned above revealed a synergy between the antimicrobial and the anti-adhesive properties of RLs, making these compounds good candidates for the improvement of the medical devices antibiofilm properties.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Biofilms , Catheters/microbiology , Dimethylpolysiloxanes , Glycolipids/pharmacology , Humans , Staphylococcus epidermidis
12.
Cells ; 11(8)2022 04 12.
Article in English | MEDLINE | ID: mdl-35455986

ABSTRACT

BACKGROUND: Aquaporins are membrane channels responsible for the bidirectional transfer of water and small non-charged solutes across cell membranes. AQP3 and AQP5 are overexpressed in pancreatic ductal adenocarcinoma, playing key roles in cell migration, proliferation, and invasion. Here, we evaluated AQP3 and AQP5 involvement in cell biomechanical properties, cell-cell adhesion, and cell migration, following a loss-of-function strategy on BxPC-3 cells. RESULTS: Silencing of AQP3 and AQP5 was functionally validated by reduced membrane permeability and had implications on cell migration, slowing wound recovery. Moreover, silenced AQP5 and AQP3/5 cells showed higher membrane fluidity. Biomechanical and morphological changes were assessed by atomic force microscopy (AFM), revealing AQP5 and AQP3/5 silenced cells with a lower stiffness than their control. Through cell-cell adhesion measurements, the work (energy) necessary to detach two cells was found to be lower for AQP-silenced cells than control, showing that these AQPs have implications on cell-cell adhesion. CONCLUSION: These findings highlight AQP3 and AQP5 involvement in the biophysical properties of cell membranes, whole cell biomechanical properties, and cell-cell adhesion, thus having potential implication in the settings of tumor development.


Subject(s)
Aquaporin 3 , Aquaporin 5 , Pancreatic Neoplasms , Aquaporin 3/genetics , Aquaporin 3/metabolism , Aquaporin 5/genetics , Aquaporin 5/metabolism , Cell Adhesion , Cell Movement , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
13.
Front Cell Infect Microbiol ; 12: 840968, 2022.
Article in English | MEDLINE | ID: mdl-35372095

ABSTRACT

Mechanisms of malaria parasite interaction with its host red blood cell may provide potential targets for new antimalarial approaches. Pyruvate kinase deficiency has been associated with resistance to malaria in both experimental models and population studies. Two of the major pyruvate kinase deficient-cell disorders are the decrease in ATP and the increase in 2,3-biphosphoglycerate (2,3-BPG) concentration. High levels of this metabolite, only present in mammalian red blood cell, has an inhibitory effect on glycolysis and we hypothesized that its accumulation may also be harmful to the parasite and be involved in the mechanism of protection provided by that enzymopathy. We examined the effect of a synthetic form, 2,3-DPG, on the Plasmodium falciparum intraerythrocytic developmental cycle in vitro. Results showed an impairment of parasite growth with a direct effect on parasite maturation as significant lower progeny emerged from parasites that were submitted to 2,3-DPG. Further, adding the compound to the culture medium did not result in any effect on the host cell, but instead the metabolic profile of an infected cell became closer to that of a non-infected cell.


Subject(s)
Malaria , Plasmodium falciparum , 2,3-Diphosphoglycerate/metabolism , Animals , Erythrocytes/parasitology , Glycolysis , Malaria/metabolism , Mammals
14.
Annu Rev Biophys ; 51: 201-221, 2022 05 09.
Article in English | MEDLINE | ID: mdl-34990221

ABSTRACT

Mechanical properties have been extensively studied in pure elastic or viscous materials; however, most biomaterials possess both physical properties in a viscoelastic component. How the biomechanics of a fibrin clot is related to its composition and the microenvironment where it is formed is not yet fully understood. This review gives an outline of the building mechanisms for blood clot mechanical properties and how they relate to clot function. The formation of a blood clot in health conditions or the formation of a dangerous thrombus go beyond the mere polymerization of fibrinogen into a fibrin network. The complex composition and localization of in vivo fibrin clots demonstrate the interplay between fibrin and/or fibrinogen and blood cells. The study of these protein-cell interactions and clot mechanical properties may represent new methods for the evaluation of cardiovascular diseases (the leading cause of death worldwide), creating new possibilities for clinical diagnosis, prognosis, and therapy.


Subject(s)
Thrombosis , Fibrin , Fibrinogen , Humans
15.
J Cell Sci ; 135(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-34528688

ABSTRACT

In atherosclerotic lesions, vascular smooth muscle cells (VSMCs) represent half of the foam cell population, which is characterized by an aberrant accumulation of undigested lipids within lysosomes. Loss of lysosome function impacts VSMC homeostasis and disease progression. Understanding the molecular mechanisms underlying lysosome dysfunction in these cells is, therefore, crucial. We identify cholesteryl hemiazelate (ChA), a stable oxidation end-product of cholesteryl-polyunsaturated fatty acid esters, as an inducer of lysosome malfunction in VSMCs. ChA-treated VSMCs acquire a foam-cell-like phenotype, characterized by enlarged lysosomes full of ChA and neutral lipids. The lysosomes are perinuclear and exhibit degradative capacity and cargo exit defects. Lysosome luminal pH is also altered. Even though the transcriptional response machinery and autophagy are not activated by ChA, the addition of recombinant lysosomal acid lipase (LAL) is able to rescue lysosome dysfunction. ChA significantly affects VSMC proliferation and migration, impacting atherosclerosis. In summary, this work shows that ChA is sufficient to induce lysosomal dysfunction in VSMCs, that, in ChA-treated VSMCs, neither lysosome biogenesis nor autophagy are triggered, and, finally, that recombinant LAL can be a therapeutic approach for lysosomal dysfunction.


Subject(s)
Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Cell Proliferation , Cells, Cultured , Foam Cells , Homeostasis , Lysosomes
17.
Front Cardiovasc Med ; 8: 715842, 2021.
Article in English | MEDLINE | ID: mdl-34568457

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an aggressive neurodegenerative disorder related to neuroinflammation that is associated with increased risk of thrombosis. We aimed to evaluate γ' fibrinogen plasma level (an in vivo variant of fibrinogen) as a biomarker in ALS, and to test its role as a predictor of disease progression and survival. Sixty-seven consecutive patients with ALS were followed and the results were compared with those from 82 healthy blood donors. Patients were clinically evaluated at the time of blood sampling and on follow-up (every 3 months for the beginning of the follow-up until death) by applying the revised ALS Functional Rating Scale. Human plasma γ' fibrinogen concentration was quantified using a specific two-site sandwich kit enzyme-linked immunosorbent assay. We found, for the first time, a positive association between γ' fibrinogen concentration and survival in ALS patients: patients with higher γ' fibrinogen plasma levels survived longer, and this finding was not influenced by confounders such as age, gender, respiratory impairment, or functionality (ALSFRS-R score). Since increased levels have a positive impact on outcome, this novel biomarker should be further investigated in ALS.

18.
Colloids Surf B Biointerfaces ; 208: 112057, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34464911

ABSTRACT

Staphylococcus aureus medical devices related-infections, such as blood stream catheter are of major concern. Their prevention is compulsory and strategies, not prone to the development of resistance, to prevent S. aureus biofilms on catheter surfaces (e.g. silicone) are needed. In this work two different approaches using sophorolipids were studied to prevent S. aureus biofilm formation on medical grade silicone: i) an antiadhesive strategy through covalent bond of sophorolipids to the surface; ii) and a release strategy using isolated most active sophorolipids. Sophorolipids produced by Starmerella bombicola, were characterized by UHPLC-MS and RMN, purified by automatic flash chromatography and tested for their antimicrobial activity towards S. aureus. Highest antimicrobial activity was observed for C18:0 and C18:1 diacetylated lactonic sophorolipids showing a MIC of 50 µg mL-1. Surface modification with acidic or lactonic sophorolipids when evaluating the anti-adhesive or release strategy, respectively, was confirmed by contact angle, FTIR-ATR and AFM analysis. When using a mixture of acidic sophorolipids covalently bonded to silicone surface as antiadhesive strategy cytocompatible surfaces were obtained and a reduction of 90 % on biofilm formation was observed. Nevertheless, if a release strategy is adopted with purified lactonic sophorolipids a higher effect is achieved. Most promising compound was C18:1 diacateylated lactonic sophorolipid that showed no cellular viability reduction when a concentration of 1.5 mg mL-1 was selected and a reduction on biofilm around 5 log units. Results reinforce the applicability of these antimicrobial biosurfactants on preventing biofilms and disclose that their antimicrobial effect is imperative when comparing to their antiadhesive properties.


Subject(s)
Catheter-Related Infections , Methicillin-Resistant Staphylococcus aureus , Catheter-Related Infections/prevention & control , Glycolipids/pharmacology , Humans , Oleic Acids , Saccharomycetales , Staphylococcus aureus
19.
Pharmaceutics ; 13(3)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802592

ABSTRACT

Innovative formulations, including solid lipid nanoparticles (SLNs), have been sought to improve skin permeation of non-steroidal anti-inflammatory drugs (NSAIDs). The present study explores the use of SLNs, prepared using a fusion-emulsification method, to increase skin permeation and in vivo activity of two relevant NSAIDs: A liquid molecule (etofenamate) and a solid one (ibuprofen), formulated in a 2% hydroxypropyl methylcellulose gel through the gelation of SLN suspensions. Compritol® 888 ATO and Tween® 80 were used as a solid lipid and a surfactant, respectively. All production steps were up scalable, resulting in SLNs with high encapsulation efficiency (>90%), a mean particle size of <250 nm, a polydispersity index <0.2, and that were stable for 12 months. In vitro permeation, using human skin in Franz diffusion cells, showed increased permeation and similar cell viability in Df and HaCaT cell lines for SLN formulations when compared to commercial formulations of etofenamate (Reumon® Gel 5%) and ibuprofen (Ozonol® 5%). In vivo activity in the rat paw edema inflammation model showed that SLN hydrogels containing lower doses of etofenamate (8.3 times lower) and ibuprofen (16.6 times lower) produced similar effects compared to the commercial formulations, while decreasing edema and inflammatory cell infiltration, and causing no histological changes in the epidermis. These studies demonstrate that encapsulation in SLNs associated to a suitable hydrogel is a promising technological approach to NSAIDs dermal application.

20.
Biomedicines ; 10(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35052737

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a complex metabolic disease often associated with severe complications that may result in patient morbidity or death. One T2DM etiological agent is chronic hyperglycemia, a condition that induces damaging biological processes, including impactful extracellular matrix (ECM) modifications, such as matrix components accumulation. The latter alters ECM stiffness, triggering fibrosis, inflammation, and pathological angiogenesis. Hence, studying ECM biochemistry and biomechanics in the context of T2DM, or obesity, is highly relevant. With this in mind, we examined both native and decellularized tissues of obese B6.Cg-Lepob/J (ob/ob) and diabetic BKS.Cg-Dock7m+/+LeprdbJ (db/db) mice models, and extensively investigated their histological and biomechanical properties. The tissues analyzed herein were those strongly affected by diabetes-skin, kidney, adipose tissue, liver, and heart. The referred organs and tissues were collected from 8-week-old animals and submitted to classical histological staining, immunofluorescence, scanning electron microscopy, rheology, and atomic force microscopy. Altogether, this systematic characterization has identified significant differences in the architecture of both ob/ob and db/db tissues, namely db/db skin presents loose epidermis and altered dermis structure, the kidneys have clear glomerulopathy traits, and the liver exhibits severe steatosis. The distribution of ECM proteins also pinpoints important differences, such as laminin accumulation in db/db kidneys and decreased hyaluronic acid in hepatocyte cytoplasm in both obese and diabetic mice. In addition, we gathered a significant set of data showing that ECM features are maintained after decellularization, making these matrices excellent biomimetic scaffolds for 3D in vitro approaches. Importantly, mechanical studies revealed striking differences between tissue ECM stiffness of control (C57BL/6J), obese, and diabetic mice. Notably, we have unveiled that the intraperitoneal adipose tissue of diabetic animals is significantly stiffer (G* ≈ 10,000 Pa) than that of ob/ob or C57BL/6J mice (G* ≈ 3000-5000 Pa). Importantly, this study demonstrates that diabetes and obesity selectively potentiate severe histological and biomechanical alterations in different matrices that may impact vital processes, such as angiogenesis, wound healing, and inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...