Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Differ ; 22(3): 377-88, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25257172

ABSTRACT

Autophagy is a catabolic process aimed at recycling cellular components and damaged organelles in response to diverse conditions of stress, such as nutrient deprivation, viral infection and genotoxic stress. A growing amount of evidence in recent years argues for oxidative stress acting as the converging point of these stimuli, with reactive oxygen species (ROS) and reactive nitrogen species (RNS) being among the main intracellular signal transducers sustaining autophagy. This review aims at providing novel insight into the regulatory pathways of autophagy in response to glucose and amino acid deprivation, as well as their tight interconnection with metabolic networks and redox homeostasis. The role of oxidative and nitrosative stress in autophagy is also discussed in the light of its being harmful for both cellular biomolecules and signal mediator through reversible posttranslational modifications of thiol-containing proteins. The redox-independent relationship between autophagy and antioxidant response, occurring through the p62/Keap1/Nrf2 pathway, is also addressed in order to provide a wide perspective upon the interconnection between autophagy and oxidative stress. Herein, we also attempt to afford an overview of the complex crosstalk between autophagy and DNA damage response (DDR), focusing on the main pathways activated upon ROS and RNS overproduction. Along these lines, the direct and indirect role of autophagy in DDR is dissected in depth.


Subject(s)
Autophagy/physiology , Oxidative Stress/physiology , Animals , Homeostasis , Humans , Signal Transduction
2.
Cell Death Dis ; 4: e581, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23559015

ABSTRACT

Endoplasmic reticulum (ER) is the primary site for the synthesis and folding of secreted and membrane-bound proteins. Accumulation of unfolded and misfolded proteins in ER underlies a wide range of human neurodegenerative disorders. Hence, molecules regulating the ER stress response represent potential candidates as drug targets for tackling these diseases. Protein disulphide isomerase (PDI) is a chaperone involved in ER stress pathway, its activity being an important cellular defense against protein misfolding. Here, we demonstrate that human neuroblastoma SH-SY5Y cells overexpressing the reticulon protein 1-C (RTN1-C) reticulon family member show a PDI punctuate subcellular distribution identified as ER vesicles. This represents an event associated with a significant increase of PDI enzymatic activity. We provide evidence that the modulation of PDI localization and activity does not only rely upon ER stress induction or upregulation of its synthesis, but tightly correlates to an alteration in its nitrosylation status. By using different RTN1-C mutants, we demonstrate that the observed effects depend on RTN1-C N-terminal region and on the integrity of the microtubule network. Overall, our results indicate that RTN1-C induces PDI redistribution in ER vesicles, and concomitantly modulates its activity by decreasing the levels of its S-nitrosylated form. Thus RTN1-C represents a promising candidate to modulate PDI function.


Subject(s)
Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum/metabolism , Nerve Tissue Proteins/genetics , Protein Disulfide-Isomerases/genetics , Transport Vesicles/metabolism , Cell Line, Tumor , Endoplasmic Reticulum/ultrastructure , Gene Expression Regulation , Humans , Microtubules/metabolism , Microtubules/ultrastructure , Mutation , Nerve Tissue Proteins/metabolism , Protein Disulfide-Isomerases/metabolism , Protein Folding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Signal Transduction , Transport Vesicles/ultrastructure
3.
Genes Nutr ; 2(3): 295-305, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18850184

ABSTRACT

Polyphenols represent a large class of plant-derived molecules with a general chemical structure that act as potent free radical scavengers. They have long been recognized to possess several therapeutic activities ranging from anti-thrombotic to antioxidant. Moreover, the capability of polyphenols to act as reducing or oxidizing molecules depends on the presence of environmental metals and on the concentrations used. In this work we demonstrated that the stilbene trans-resveratrol was able to commit human breast cancer MCF-7 cells to apoptosis. Mainly, we evidenced a pivotal role of the mitochondria in this phenomenon as cytochrome c release into the cytosol was found after the treatment. We further showed that trans-resveratrol was able to affect cellular redox state. In particular, it induced an early production of ROS and lipid oxidation, and only later compromised the GSH/GSSG ratio. This mode of action was mirrored by a temporally different activation of JNK and p38(MAPK), with the former rapidly induced and the latter weakly activated at long intervals. The results obtained demonstrate a pro-apoptotic activity for trans-resveratrol, and suggest a preferential activation of different classes of MAP kinases in response to different oxidative stimuli (ROS versus GSH/GSSG alteration).

4.
J Cell Biochem ; 97(4): 813-23, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16237705

ABSTRACT

To investigate on the hypothetical presence of an antiapoptotic gene, we utilized the CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primers) strategy amplifying unknown sequences from a background of genomic (bovine herpesvirus type-1) BHV-1 DNA. An alignment of carboxyl-terminal domains belonging to three proteins encoded by gamma34.5, MyD116 and GADD34 genes, was carried out to design degenerate PCR primers in highly conserved regions. This allowed the amplification of a 110 bp fragment. This fragment was subjected to automatic sequencing and DNA sequence analysis revealed that its position resided between the nt 14363 and the nt 14438 in bovine herpesvirus type-1 (BHV-1) Cooper strain sharing an identity of 86% (UL14). Transient transfections showed that UL14 protein is efficient in protecting MDBK and K562 cells from sorbitol induced apoptosis. The protein's anti-apoptotic function may derive from its heat shock protein-like properties.


Subject(s)
Apoptosis/genetics , Herpesvirus 1, Bovine/genetics , Polymerase Chain Reaction/methods , Viral Proteins/genetics , Amino Acid Motifs , Animals , Base Sequence , Cell Line , Consensus Sequence , DNA Primers/chemistry , Databases as Topic , HSP72 Heat-Shock Proteins/genetics , Humans , K562 Cells , Molecular Sequence Data , Sequence Homology, Amino Acid , Software , Viral Proteins/physiology
5.
Cell Death Differ ; 12(12): 1555-63, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16151458

ABSTRACT

Modifications of specific amino-acid residues of proteins are fundamental in order to modulate different signaling processes among which the cascade of phosphorylation represents the most effective example. Recently, also, the modification of the redox state of cysteine residues of certain proteins, which is a widespread mechanism in the regulation of protein function, has been proposed to be involved in signaling pathways. Growing evidence shows that some transcription factors could be modulated by both oxidation and phosphorylation. In particular, the pathways regulated by the mitogen activated protein (MAP) kinases represent well-established examples of the cross talk between redox-mediated signaling and phosphorylative cascades. This review will compare the two modes of signal transduction and propose an evolutionary model of a partnership of the two mechanisms in the eukaryotic cell, with redox-mediated signals being more specific and ancestral and phosphorylative signals being more diffuse but predominant in signal propagation.


Subject(s)
Disulfides/chemistry , Signal Transduction/physiology , Animals , Humans , Oxidation-Reduction , Phosphorylation
6.
Eur J Biochem ; 268(3): 737-42, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11168413

ABSTRACT

Cu,Zn superoxide dismutases are characterized by the presence of four highly conserved charged residues (Lys120, Glu/Asp130, Glu131 and Lys134), which are placed at the edge of the active site channel and have been shown to be individually involved in the electrostatic attraction of the substrate toward the catalytically active copper ion. By genetic engineering we mutated these four residues into neutrally charged ones (Leu120, Gln130, Gln131, Thr134). The effects of these mutations on the rate of superoxide dismutation were not dramatic. In fact, at two different pH and ionic strength values, the mutant enzyme had a catalytic constant even higher with respect to the wild-type protein, showing that electrostatic interaction at these surface sites is not essential for high catalytic efficiency of the enzyme. The mutant and the wild-type enzyme showed the same degree of inhibition by CN(-), and both were not affected by I(-), showing that mutations did not alter the sensitivity of the enzyme to anions. On the other hand, reconstitution of active enzyme from either the wild-type or mutant copper-free enzymes with a copper(I)-glutathione [Cu(I)-GSH] complex showed that metal uptake by the mutant was much slower than by the wild-type enzyme. The demonstration that the 'electrostatic loop' is apparently conserved to assure optimal copper uptake by the enzyme, rather than fast dismutation, may provide further support to the idea that Cu,Zn superoxide dismutase is a bifunctional protein, acting in cellular defense against oxidative stress both as a copper buffer and as a superoxide radical scavenger.


Subject(s)
Copper/pharmacokinetics , Superoxide Dismutase/chemistry , Superoxide Dismutase/physiology , Binding Sites , Catalysis , Copper/metabolism , Escherichia coli/enzymology , Glutathione Transferase/metabolism , Hydrogen-Ion Concentration , Ions , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Oxidative Stress , Plasmids/metabolism , Protein Binding , Protein Structure, Secondary , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...