Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Oncol ; 27(12): 2275-2283, 2016 12.
Article in English | MEDLINE | ID: mdl-27827301

ABSTRACT

BACKGROUND: Previously, we showed cancer cells rely on the MTH1 protein to prevent incorporation of otherwise deadly oxidised nucleotides into DNA and we developed MTH1 inhibitors which selectively kill cancer cells. Recently, several new and potent inhibitors of MTH1 were demonstrated to be non-toxic to cancer cells, challenging the utility of MTH1 inhibition as a target for cancer treatment. MATERIAL AND METHODS: Human cancer cell lines were exposed in vitro to MTH1 inhibitors or depleted of MTH1 by siRNA or shRNA. 8-oxodG was measured by immunostaining and modified comet assay. Thermal Proteome profiling, proteomics, cellular thermal shift assays, kinase and CEREP panel were used for target engagement, mode of action and selectivity investigations of MTH1 inhibitors. Effect of MTH1 inhibition on tumour growth was explored in BRAF V600E-mutated malignant melanoma patient derived xenograft and human colon cancer SW480 and HCT116 xenograft models. RESULTS: Here, we demonstrate that recently described MTH1 inhibitors, which fail to kill cancer cells, also fail to introduce the toxic oxidized nucleotides into DNA. We also describe a new MTH1 inhibitor TH1579, (Karonudib), an analogue of TH588, which is a potent, selective MTH1 inhibitor with good oral availability and demonstrates excellent pharmacokinetic and anti-cancer properties in vivo. CONCLUSION: We demonstrate that in order to kill cancer cells MTH1 inhibitors must also introduce oxidized nucleotides into DNA. Furthermore, we describe TH1579 as a best-in-class MTH1 inhibitor, which we expect to be useful in order to further validate the MTH1 inhibitor concept.


Subject(s)
DNA Repair Enzymes/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Neoplasms/drug therapy , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Pyrimidines/administration & dosage , 8-Hydroxy-2'-Deoxyguanosine , Animals , Cell Line, Tumor , DNA/genetics , DNA/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/isolation & purification , Deoxyguanosine/metabolism , Humans , Mice , Neoplasms/genetics , Neoplasms/pathology , Nucleotides/metabolism , Oxidation-Reduction , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Proto-Oncogene Proteins B-raf/genetics , RNA, Small Interfering/genetics , Xenograft Model Antitumor Assays
2.
Clin Pharmacol Ther ; 96(4): 498-507, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24971633

ABSTRACT

Cerivastatin and repaglinide are substrates of cytochrome P450 (CYP)2C8, CYP3A4, and organic anion-transporting polypeptide (OATP)1B1. A recent study revealed an increased risk of rhabdomyolysis in patients using cerivastatin with clopidogrel, warranting further studies on clopidogrel interactions. In healthy volunteers, repaglinide area under the concentration-time curve (AUC(0-∞)) was increased 5.1-fold by a 300-mg loading dose of clopidogrel and 3.9-fold by continued administration of 75 mg clopidogrel daily. In vitro, we identified clopidogrel acyl-ß-D-glucuronide as a potent time-dependent inhibitor of CYP2C8. A physiologically based pharmacokinetic model indicated that inactivation of CYP2C8 by clopidogrel acyl-ß-D-glucuronide leads to uninterrupted 60-85% inhibition of CYP2C8 during daily clopidogrel treatment. Computational modeling resulted in docking of clopidogrel acyl-ß-D-glucuronide at the CYP2C8 active site with its thiophene moiety close to heme. The results indicate that clopidogrel is a strong CYP2C8 inhibitor via its acyl-ß-D-glucuronide and imply that glucuronide metabolites should be considered potential inhibitors of CYP enzymes.


Subject(s)
Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Glucuronides/metabolism , Platelet Aggregation Inhibitors/metabolism , Ticlopidine/analogs & derivatives , Aryl Hydrocarbon Hydroxylases/chemistry , Carbamates/pharmacokinetics , Catalytic Domain , Clopidogrel , Computer Simulation , Cytochrome P-450 CYP2C8/chemistry , Cytochrome P-450 CYP3A/chemistry , Drug Interactions , Female , Humans , Hypoglycemic Agents/pharmacokinetics , Male , Metabolic Detoxication, Phase II , Molecular Docking Simulation , Piperidines/pharmacokinetics , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/pharmacology , Ticlopidine/chemistry , Ticlopidine/metabolism , Ticlopidine/pharmacology , Time Factors
3.
Clin Pharmacol Ther ; 94(3): 383-93, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23657159

ABSTRACT

Cytochrome P450 (CYP) 3A4 is considered the most important enzyme in imatinib biotransformation. In a randomized, crossover study, 10 healthy subjects were administered gemfibrozil 600 mg or placebo twice daily for 6 days, and imatinib 200 mg on day 3, to study the significance of CYP2C8 in imatinib pharmacokinetics. Unexpectedly, gemfibrozil reduced the peak plasma concentration (Cmax) of imatinib by 35% (P < 0.001). Gemfibrozil also reduced the Cmax and area under the plasma concentration-time curve (AUC0-∞) of N-desmethylimatinib by 56 and 48% (P < 0.001), respectively, whereas the AUC0-∞ of imatinib was unaffected. Furthermore, gemfibrozil reduced the Cmax/plasma concentration at 24 h (C24 h) ratios of imatinib and N-desmethylimatinib by 44 and 17% (P < 0.05), suggesting diminished daily fluctuation of imatinib plasma concentrations during concomitant use with gemfibrozil. Our findings indicate significant participation of CYP2C8 in the metabolism of imatinib in humans, and support involvement of an intestinal influx transporter in imatinib absorption.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Aryl Hydrocarbon Hydroxylases/metabolism , Benzamides/pharmacokinetics , Gemfibrozil/pharmacology , Hypolipidemic Agents/pharmacology , Piperazines/pharmacokinetics , Pyrimidines/pharmacokinetics , Absorption , Adult , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Aryl Hydrocarbon Hydroxylases/genetics , Benzamides/administration & dosage , Benzamides/blood , Cross-Over Studies , Cytochrome P-450 CYP2C8 , Drug Antagonism , Female , Genotype , Humans , Imatinib Mesylate , Male , Piperazines/administration & dosage , Piperazines/blood , Pyrimidines/administration & dosage , Pyrimidines/blood , Young Adult
4.
Br J Pharmacol ; 165(8): 2787-98, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22014153

ABSTRACT

BACKGROUND AND PURPOSE: Imatinib, a cytochrome P450 2C8 (CYP2C8) and CYP3A4 substrate, markedly increases plasma concentrations of the CYP3A4/5 substrate simvastatin and reduces hepatic CYP3A4/5 activity in humans. Because competitive inhibition of CYP3A4/5 does not explain these in vivo interactions, we investigated the reversible and time-dependent inhibitory effects of imatinib and its main metabolite N-desmethylimatinib on CYP2C8 and CYP3A4/5 in vitro. EXPERIMENTAL APPROACH: Amodiaquine N-deethylation and midazolam 1'-hydroxylation were used as marker reactions for CYP2C8 and CYP3A4/5 activity. Direct, IC(50) -shift, and time-dependent inhibition were assessed with human liver microsomes. KEY RESULTS: Inhibition of CYP3A4 activity by imatinib was pre-incubation time-, concentration- and NADPH-dependent, and the time-dependent inactivation variables K(I) and k(inact) were 14.3 µM and 0.072 in(-1) respectively. In direct inhibition experiments, imatinib and N-desmethylimatinib inhibited amodiaquine N-deethylation with a K(i) of 8.4 and 12.8 µM, respectively, and midazolam 1'-hydroxylation with a K(i) of 23.3 and 18.1 µM respectively. The time-dependent inhibition effect of imatinib was predicted to cause up to 90% inhibition of hepatic CYP3A4 activity with clinically relevant imatinib concentrations, whereas the direct inhibition was predicted to be negligible in vivo. CONCLUSIONS AND IMPLICATIONS: Imatinib is a potent mechanism-based inhibitor of CYP3A4 in vitro and this finding explains the imatinib-simvastatin interaction and suggests that imatinib could markedly increase plasma concentrations of other CYP3A4 substrates. Our results also suggest a possibility of autoinhibition of CYP3A4-mediated imatinib metabolism leading to a less significant role for CYP3A4 in imatinib biotransformation in vivo than previously proposed.


Subject(s)
Antineoplastic Agents/pharmacology , Cytochrome P-450 CYP3A Inhibitors , Piperazines/pharmacology , Pyrimidines/pharmacology , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Aryl Hydrocarbon Hydroxylases/metabolism , Benzamides , Cytochrome P-450 CYP2C8 , Cytochrome P-450 CYP3A/metabolism , Drug Interactions , Humans , Imatinib Mesylate , Intestinal Mucosa/metabolism , Microsomes, Liver/enzymology , Simvastatin/pharmacokinetics
5.
Clin Pharmacol Ther ; 88(2): 223-30, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20592724

ABSTRACT

According to available information, montelukast is metabolized by cytochrome P450 (CYP) 3A4 and 2C9. In order to study the significance of CYP2C8 in the pharmacokinetics of montelukast, 10 healthy subjects were administered gemfibrozil 600 mg or placebo twice daily for 3 days, and 10 mg montelukast on day 3, in a randomized, crossover study. Gemfibrozil increased the mean area under the plasma concentration-time curve (AUC)(0-infinity), peak plasma concentration (C(max)), and elimination half-life (t(1/2)) of montelukast 4.5-fold, 1.5-fold, and 3.0-fold, respectively (P < 0.001). After administration of gemfibrozil, the time to reach C(max) (t(max)) of the montelukast metabolite M6 was prolonged threefold (P = 0.005), its AUC(0-7) was reduced by 40% (P = 0.027), and the AUC(0-24) of the secondary metabolite M4 was reduced by >90% (P < 0.001). In human liver microsomes, gemfibrozil 1-O-beta glucuronide inhibited the formation of M6 (but not of M5) from montelukast 35-fold more potently than did gemfibrozil (half-maximal inhibitory concentration (IC(50)) 3.0 and 107 micromol/l, respectively). In conclusion, gemfibrozil markedly increases the plasma concentrations of montelukast, indicating that CYP2C8 is crucial in the elimination of montelukast.


Subject(s)
Acetates/pharmacokinetics , Anti-Asthmatic Agents/pharmacokinetics , Aryl Hydrocarbon Hydroxylases/metabolism , Gemfibrozil/adverse effects , Hypolipidemic Agents/adverse effects , Leukotriene Antagonists/pharmacokinetics , Quinolines/pharmacokinetics , Acetates/blood , Adult , Anti-Asthmatic Agents/blood , Area Under Curve , Biotransformation , Cross-Over Studies , Cyclopropanes , Cytochrome P-450 CYP2C8 , DNA/genetics , Drug Interactions , Female , Genotype , Glucuronides/metabolism , Half-Life , Humans , Leukotriene Antagonists/blood , Male , Mass Spectrometry , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Quinolines/blood , Sulfides , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...