Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 21(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36827096

ABSTRACT

C-type lectins (CTLs) are a family of carbohydrate-binding proteins that mediate multiple biological events, including adhesion between cells, the turnover of serum glycoproteins, and innate immune system reactions to prospective invaders. Here, we describe the cDNA cloning of lectin from the bivalve Glycymeris yessoensis (GYL), which encodes 161 amino acids and the C-type carbohydrate recognition domain (CRD) with EPN and WND motifs. The deduced amino acid sequence showed similarity to other CTLs. GYL is a glycoprotein containing two N-glycosylation sites per subunit. N-glycans are made up of xylose, mannose, D-glucosamine, 3-O-methylated galactose, D-quinovoses, and 3-O-methylated 6-deoxy-D-glucose. The potential CRD tertiary structure of the GYL adopted CTL-typical long-form double-loop structure and included three disulfide bridges at the bases of the loops. Additionally, when confirming the GYL sequence, eight isoforms of this lectin were identified. This fact indicates the presence of a multigene family of GYL-like C-type lectins in the bivalve G. yessoensis. Using the glycan microarray approach, natural carbohydrate ligands were established, and the glycotope for GYL was reconstructed as "Galß1-4GlcNAcß obligatory containing an additional fragment", like a sulfate group or a methyl group of fucose or N-acetylgalactosamine residues.


Subject(s)
Bivalvia , Lectins, C-Type , Animals , Prospective Studies , Lectins, C-Type/metabolism , Carbohydrates , Bivalvia/chemistry , Polysaccharides/chemistry , Cloning, Molecular
2.
Mar Drugs ; 22(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38248652

ABSTRACT

In this study, a new l-rhamnose-binding lectin (GYL-R) from the hemolymph of bivalve Glycymeris yessoensis was purified using affinity and ion-exchange chromatography and functionally characterized. Lectin antimicrobial activity was examined in different ways. The lectin was inhibited by saccharides possessing the same configuration of hydroxyl groups at C-2 and C-4, such as l-rhamnose, d-galactose, lactose, l-arabinose and raffinose. Using the glycan microarray approach, natural carbohydrate ligands were established for GYL-R as l-Rha and glycans containing the α-Gal residue in the terminal position. The GYL-R molecular mass determined by MALDI-TOF mass spectrometry was 30,415 Da. The hemagglutination activity of the lectin was not affected by metal ions. The lectin was stable up to 75 °C and between pH 4.0 and 12.0. The amino acid sequence of the five GYL-R segments was obtained with nano-ESI MS/MS and contained both YGR and DPC-peptide motifs which are conserved in most of the l-rhamnose-binding lectin carbohydrate recognition domains. Circular dichroism confirmed that GYL is a α/ß-protein with a predominance of the random coil. Furthermore, GYL-R was able to bind and suppress the growth of the Gram-negative bacteria E. coli by recognizing lipopolysaccharides. Together, these results suggest that GYL-R is a new member of the RBL family which participates in the self-defense mechanism against bacteria and pathogens with a distinct carbohydrate-binding specificity.


Subject(s)
Bivalvia , Lectins , Animals , Lectins/pharmacology , Rhamnose , Escherichia coli , Tandem Mass Spectrometry , Anti-Bacterial Agents/pharmacology
3.
Mar Drugs ; 21(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36662183

ABSTRACT

Most proteins have the ability to self-associate into homooligomeric protein complexes, which consist of two or more identical subunits. Today, modern methods of molecular modeling are an integral part of the study of many biologically active molecules. In silico methods are widely used in structure establishing and function and activity prediction of lectins - carbohydrate-binding proteins. Here, we described by computer simulation the spatial organization of lectin isolated from the mantle of the mussel Mytilus trossulus (MTL). It was shown that the dimerization of MTL gives a total of six ligand binding sites that may be important for the manifestation its biological properties. The ability of MTL to form a dimeric and oligomeric structure was confirmed by dynamic light scattering and SDS-PAGE methods.


Subject(s)
Mytilus , Animals , Mytilus/metabolism , Lectins/chemistry , Computer Simulation , Binding Sites
4.
Carbohydr Polym ; 229: 115556, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31826483

ABSTRACT

Halomonas halocynthiae KMM 1376T is a Gram-negative bacterium that has been isolated from gill tissue of the ascidian Halocynthia aurantium. Mild acid hydrolysis of the lipopolysaccharide of H. halocynthiae KMM 1376T afforded an O-polysaccharide, which was studied by sugar analysis and NMR spectroscopy. The following structure of the O-polysaccharide presented as sulfated α-D-mannan was established: →2)-α-D-Manp3,6S-(1→3)-α-D-Manp2Ac(∼71%)6S-(1→3)-α-D-Manp-(1→. Study of biological activity has shown that sulfated α-D-mannan can specifically reduce the cell viability and colony formation of the human breast adenocarcinoma MDA-MB-231 cells in a concentration-dependent manner. In addition, polysaccharide inhibits epidermal growth factor induced neoplastic cell transformation in mouse epidermal JB6 Cl41 cells.


Subject(s)
Halomonas/metabolism , Mannans/chemistry , Acetates/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Transformation, Neoplastic/drug effects , Epidermal Growth Factor/pharmacology , Humans , Hydrolysis , Lipopolysaccharides/chemistry , Mannans/pharmacology , Mice , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Sulfates/chemistry
5.
Carbohydr Polym ; 221: 120-126, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31227150

ABSTRACT

Sulfated fucose-containing glycopolymers are currently of great interest because of their wide spectrum of bioactivity, including anti-tumor properties. In this study, the structure of O-polysaccharide (OPS) of the marine bacterium Vadicella arenosi KMM 9024T, its effect on the proliferation of human breast cancer MCF-7 cells and cancer preventive properties were investigated. Two OPS fractions with different molecular weights were isolated and purified from the lipopolysaccharide by mild acid hydrolysis followed by anion-exchange chromatography. The OPS was found to consist of α-(1→3)-linked 2-O-sulfate-d-fucopyranosyl residues, whose structure was deduced by sugar analysis along with 2D NMR spectroscopy. The biological assay indicated that polysaccharide significantly reduced the proliferation and inhibited colony formation of MCF-7 cells in a dose-dependent manner. Besides, the experiment indicated the inhibitory role of polysaccharide on EGF-induced neoplastic cell transformation in mouse epidermal cells. The investigated polysaccharide is the first sulfated fucan isolated from the bacteria.


Subject(s)
Antineoplastic Agents/pharmacology , Galactans/pharmacology , Rhodobacteraceae/chemistry , Sulfuric Acid Esters/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Carbohydrate Sequence , Cell Proliferation/drug effects , Galactans/chemistry , Galactans/isolation & purification , Humans , MCF-7 Cells , Mice , Sulfuric Acid Esters/chemistry , Sulfuric Acid Esters/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...