Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 14(1): 3763, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353482

ABSTRACT

Altered protein phosphorylation in cancer cells often leads to surface presentation of phosphopeptide neoantigens. However, their role in cancer immunogenicity remains unclear. Here we describe a mechanism by which an HLA-B*0702-specific acute myeloid leukemia phosphoneoantigen, pMLL747-755 (EPR(pS)PSHSM), is recognized by a cognate T cell receptor named TCR27, a candidate for cancer immunotherapy. We show that the replacement of phosphoserine P4 with serine or phosphomimetics does not affect pMHC conformation or peptide-MHC affinity but abrogates TCR27-dependent T cell activation and weakens binding between TCR27 and pMHC. Here we describe the crystal structures for TCR27 and cognate pMHC, map of the interface produced by nuclear magnetic resonance, and a ternary complex generated using information-driven protein docking. Our data show that non-covalent interactions between the epitope phosphate group and TCR27 are crucial for TCR specificity. This study supports development of new treatment options for cancer patients through target expansion and TCR optimization.


Subject(s)
Phosphopeptides , Receptors, Antigen, T-Cell , Humans , Phosphopeptides/metabolism , Protein Binding
3.
PLoS One ; 13(4): e0191926, 2018.
Article in English | MEDLINE | ID: mdl-29617360

ABSTRACT

CTLA-4 and CD28 exemplify a co-inhibitory and co-stimulatory signaling axis that dynamically sculpts the interaction of antigen-specific T cells with antigen-presenting cells. Anti-CTLA-4 antibodies enhance tumor-specific immunity through a variety of mechanisms including: blockade of CD80 or CD86 binding to CTLA-4, repressing regulatory T cell function and selective elimination of intratumoral regulatory T cells via an Fcγ receptor-dependent mechanism. AGEN1884 is a novel IgG1 antibody targeting CTLA-4. It potently enhanced antigen-specific T cell responsiveness that could be potentiated in combination with other immunomodulatory antibodies. AGEN1884 was well-tolerated in non-human primates and enhanced vaccine-mediated antigen-specific immunity. AGEN1884 combined effectively with PD-1 blockade to elicit a T cell proliferative response in the periphery. Interestingly, an IgG2 variant of AGEN1884 revealed distinct functional differences that may have implications for optimal dosing regimens in patients. Taken together, the pharmacological properties of AGEN1884 support its clinical investigation as a single therapeutic and combination agent.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antineoplastic Agents, Immunological/pharmacology , CTLA-4 Antigen/immunology , Immunoglobulin G/pharmacology , Neoplasms/therapy , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacokinetics , Adjuvants, Immunologic/toxicity , Amino Acid Sequence , Animals , Antibody Formation/drug effects , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacokinetics , Antineoplastic Agents, Immunological/toxicity , CHO Cells , CTLA-4 Antigen/antagonists & inhibitors , Cancer Vaccines/pharmacology , Cells, Cultured , Cricetulus , Epitope Mapping , Humans , Immunity, Cellular/drug effects , Immunoglobulin G/chemistry , Immunoglobulin G/toxicity , Lymphocyte Activation/drug effects , Macaca fascicularis , Models, Molecular , Neoplasms/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
4.
Medicines (Basel) ; 2(3): 127-140, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-28930205

ABSTRACT

Alzheimer's disease is characterized by pathogenic oligomerization, aggregation, and deposition of amyloid beta peptide (Aß), resulting in severe neuronal toxicity and associated cognitive dysfunction. In particular, increases in the absolute or relative level of the major long form of Aß, Aß42, are associated with increased cellular toxicity and rapidity of disease progression. As a result of this observation, screening to identify potential drugs to reduce the level of Aß42 have been undertaken by way of modulating the proteolytic activity of the gamma secretase complex without compromising its action on other essential substrates such as Notch. In this review we summarize results from a program that sought to develop such gamma secretase modulators based on novel natural products identified in the extract of Actaea racemosa, the well-known botanical black cohosh. Following isolation of compound 1 (SPI-014), an extensive medicinal chemistry effort was undertaken to define the SAR of 1 and related semisynthetic compounds. Major metabolic and physicochemical liabilities in 1 were overcome including replacement of both the sugar and acetate moieties with more stable alternatives that improved drug-like properties and resulted in development candidate 25 (SPI-1865). Unanticipated off-target adrenal toxicity, however, precluded advancement of this series of compounds into clinical development.

5.
ACS Chem Neurosci ; 3(11): 941-51, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23205187

ABSTRACT

A screen of a library of synthetic drugs and natural product extracts identified a botanical extract that modulates the processing of amyloid precursor protein (APP) in cultured cells to produce a lowered ratio of amyloid-beta peptide (1-42) (Aß42) relative to Aß40. This profile is of interest as a potential treatment for Alzheimer's disease. The extract, from the black cohosh plant (Actaea racemosa), was subjected to bioassay guided fractionation to isolate active components. Using a combination of normal-phase and reverse-phase chromatography, a novel triterpene monoglycoside, 1, was isolated. This compound was found to have an IC(50) of 100 nM for selectively reducing the production of amyloidogenic Aß42 while having a much smaller effect on the production of Aß40 (IC(50) 6.3 µM) in cultured cells overexpressing APP. Using IP-MS methods, this compound was found to modulate the pool of total Aß produced by reducing the proportion of Aß42 while increasing the relative amounts of shorter and less amyloidogenic Aß37 and Aß39. Concentrations of 1 sufficient to lower levels of Aß42 substantially (up to 10 µM) did not significantly affect the processing of Notch or other aspects of APP processing. When 1 (10 µg) was administered to CD-1 normal mice intracerebroventricularly, the level of Aß42 in brain was reduced. Assays for off-target pharmacology and the absence of overt signs of toxicity in mice dosed with compound 1 suggest a comparatively selective pharmacology for this triterpenoid. Compound 1 represents a new lead for the development of potential treatments for Alzheimer's disease via modulation of gamma-secretase.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/drug effects , Amyloid beta-Protein Precursor/drug effects , Cimicifuga/chemistry , Plant Extracts/pharmacology , Plant Roots/chemistry , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/drug effects , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods , Glycosides/isolation & purification , Glycosides/pharmacology , Mice , Plant Extracts/chemistry , Rhizome/chemistry , Triterpenes/isolation & purification , Triterpenes/pharmacology
6.
ACS Med Chem Lett ; 3(11): 908-13, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-24900406

ABSTRACT

The discovery of a new series of γ-secretase modulators is disclosed. Starting from a triterpene glycoside γ-secretase modulator that gave a very low brain-to-plasma ratio, initial SAR and optimization involved replacement of a pendant sugar with a series of morpholines. This modification led to two compounds with significantly improved central nervous system (CNS) exposure.

7.
Pharmacol Ther ; 116(2): 266-86, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17716740

ABSTRACT

During the last 20 years, an expanding body of research has elucidated the central role of amyloid precursor protein (APP) processing and amyloid beta peptide (Abeta) production in the risk, onset, and progression of the neurodegenerative disorder Alzheimer's disease (AD), the most common form of dementia. Ongoing research is establishing a greater level of detail for our understanding of the normal functions of APP, its proteolysis products, and the mechanisms by which this processing occurs. The importance of this processing machinery in normal cellular function, such as Notch processing, has revealed specific concerns about targeting APP processing for therapeutic purposes. Aspects of AD that are now well studied include direct and indirect genetic and other risk factors for AD, APP processing, and Abeta production. Emerging from these studies is the particular importance of the long form of Abeta, Abeta42. Elevated Abeta42 levels, as well as particularly the elevation of the ratio of Abeta42 to the shorter major form Abeta40, has been identified as important in early events in the pathogenesis of AD. The specific pathological importance of Abeta42 has drawn attention to seeking drugs that will selectively lower the levels of this peptide through reduced production or increased clearance while allowing normal protein processing to remain substantially intact. An increasing variety of compounds that modulate APP processing to reduce Abeta levels are being identified, some with Abeta42 selectivity. Such compounds are now reaching clinical evaluation to determine how they may be of benefit in the treatment of AD.


Subject(s)
Alzheimer Disease/physiopathology , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Amyloid Precursor Protein Secretases/metabolism , Animals , Disease Models, Animal , Drug Delivery Systems , Drug Design , Genetic Predisposition to Disease , Humans , Risk Factors
8.
Curr Top Med Chem ; 2(4): 417-23, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11966464

ABSTRACT

Amyloid beta peptide (Abeta) is implicated in the pathogenesis of Alzheimer s disease (AD), particularly as oligomers or polymers that are correlated with Abeta cellular toxicity. Inhibition of the formation of toxic forms of Abeta has therefore emerged as one approach to the treatment of AD. This article reviews efforts to adapt the structure of Abeta to the design and testing of peptide-based inhibitors of Abeta polymerization of interest as potential AD therapeutics.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...