Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Oncol ; 18(3): 707-725, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38126155

ABSTRACT

A robust body of work has demonstrated that a reduction in cAMP-specific 3',5'-cyclic phosphodiesterase 4D isoform 7 (PDE4D7) is linked with negative prostate cancer outcomes; however, the exact molecular mechanism that underpins this relationship is unknown. Epigenetic profiling has shown that the PDE4D gene can be hyper-methylated in transmembrane serine protease 2 (TMPRSS2)-ETS transcriptional regulator ERG (ERG) gene-fusion-positive prostate cancer (PCa) tumours, and this inhibits messenger RNA (mRNA) expression, leading to a paucity of cellular PDE4D7 protein. In an attempt to understand how the resulting aberrant cAMP signalling drives PCa growth, we immunopurified PDE4D7 and identified binding proteins by mass spectrometry. We used peptide array technology and proximity ligation assay to confirm binding between PDE4D7 and ATP-dependent RNA helicase A (DHX9), and in the design of a novel cell-permeable disruptor peptide that mimics the DHX9-binding region on PDE4D7. We discovered that PDE4D7 forms a signalling complex with the DExD/H-box RNA helicase DHX9. Importantly, disruption of the PDE4D7-DHX9 complex reduced proliferation of LNCaP cells, suggesting the complex is pro-tumorigenic. Additionally, we have identified a novel protein kinase A (PKA) phosphorylation site on DHX9 that is regulated by PDE4D7 association. In summary, we report the existence of a newly identified PDE4D7-DHX9 signalling complex that may be crucial in PCa pathogenesis and could represent a potential therapeutic target.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4 , Prostatic Neoplasms , Male , Humans , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostate/metabolism , Peptides , RNA Helicases , Neoplasm Proteins/metabolism , DEAD-box RNA Helicases/genetics
2.
FEBS J ; 289(15): 4622-4645, 2022 08.
Article in English | MEDLINE | ID: mdl-35176204

ABSTRACT

Four-and-a-half LIM domains protein 2 (FHL2) is an anti-hypertrophic adaptor protein that regulates cardiac myocyte signalling and function. Herein, we identified cardiomyopathy-associated 5 (CMYA5) as a novel FHL2 interaction partner in cardiac myocytes. In vitro pull-down assays demonstrated interaction between FHL2 and the N- and C-terminal regions of CMYA5. The interaction was verified in adult cardiac myocytes by proximity ligation assays. Immunofluorescence and confocal microscopy demonstrated co-localisation in the same subcellular compartment. The binding interface between FHL2 and CMYA5 was mapped by peptide arrays. Exposure of neonatal rat ventricular myocytes to a CMYA5 peptide covering one of the FHL2 interaction sites led to an increase in cell area at baseline, but a blunted response to chronic phenylephrine treatment. In contrast to wild-type hearts, loss or reduced FHL2 expression in Fhl2-targeted knockout mouse hearts or in a humanised mouse model of hypertrophic cardiomyopathy led to redistribution of CMYA5 into the perinuclear and intercalated disc region. Taken together, our results indicate a direct interaction of the two adaptor proteins FHL2 and CMYA5 in cardiac myocytes, which might impact subcellular compartmentation of CMYA5.


Subject(s)
Cardiomyopathy, Hypertrophic , Intracellular Signaling Peptides and Proteins , LIM-Homeodomain Proteins , Muscle Proteins , Myocytes, Cardiac , Transcription Factors , Animals , Cardiomyopathy, Hypertrophic/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Mice , Mice, Knockout , Muscle Proteins/genetics , Muscle Proteins/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Rats , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Oncogene ; 40(12): 2243-2257, 2021 03.
Article in English | MEDLINE | ID: mdl-33649538

ABSTRACT

Mdm2 antagonizes the tumor suppressor p53. Targeting the Mdm2-p53 interaction represents an attractive approach for the treatment of cancers with functional p53. Investigating mechanisms underlying Mdm2-p53 regulation is therefore important. The scaffold protein ß-arrestin2 (ß-arr2) regulates tumor suppressor p53 by counteracting Mdm2. ß-arr2 nucleocytoplasmic shuttling displaces Mdm2 from the nucleus to the cytoplasm resulting in enhanced p53 signaling. ß-arr2 is constitutively exported from the nucleus, via a nuclear export signal, but mechanisms regulating its nuclear entry are not completely elucidated. ß-arr2 can be SUMOylated, but no information is available on how SUMO may regulate ß-arr2 nucleocytoplasmic shuttling. While we found ß-arr2 SUMOylation to be dispensable for nuclear import, we identified a non-covalent interaction between SUMO and ß-arr2, via a SUMO interaction motif (SIM), that is required for ß-arr2 cytonuclear trafficking. This SIM promotes association of ß-arr2 with the multimolecular RanBP2/RanGAP1-SUMO nucleocytoplasmic transport hub that resides on the cytoplasmic filaments of the nuclear pore complex. Depletion of RanBP2/RanGAP1-SUMO levels result in defective ß-arr2 nuclear entry. Mutation of the SIM inhibits ß-arr2 nuclear import, its ability to delocalize Mdm2 from the nucleus to the cytoplasm and enhanced p53 signaling in lung and breast tumor cell lines. Thus, a ß-arr2 SIM nuclear entry checkpoint, coupled with active ß-arr2 nuclear export, regulates its cytonuclear trafficking function to control the Mdm2-p53 signaling axis.


Subject(s)
GTPase-Activating Proteins/genetics , Neoplasms/genetics , Proto-Oncogene Proteins c-mdm2/genetics , SUMO-1 Protein/genetics , Tumor Suppressor Protein p53/genetics , beta-Arrestin 2/genetics , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cytoskeleton/genetics , Cytoskeleton/metabolism , Humans , Mutation/genetics , Neoplasms/drug therapy , Neoplasms/pathology , Nuclear Export Signals/genetics , Signal Transduction/genetics , Sumoylation/genetics
4.
J Biol Chem ; 295(13): 4303-4315, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32098872

ABSTRACT

The E-protein transcription factors guide immune cell differentiation, with E12 and E47 (hereafter called E2A) being essential for B-cell specification and maturation. E2A and the oncogenic chimera E2A-PBX1 contain three transactivation domains (ADs), with AD1 and AD2 having redundant, independent, and cooperative functions in a cell-dependent manner. AD1 and AD2 both mediate their functions by binding to the KIX domain of the histone acetyltransferase paralogues CREB-binding protein (CBP) and E1A-binding protein P300 (p300). This interaction is necessary for B-cell maturation and oncogenesis by E2A-PBX1 and occurs through conserved ΦXXΦΦ motifs (with Φ denoting a hydrophobic amino acid) in AD1 and AD2. However, disruption of this interaction via mutation of the KIX domain in CBP/p300 does not completely abrogate binding of E2A and E2A-PBX1. Here, we determined that E2A-AD1 and E2A-AD2 also interact with the TAZ2 domain of CBP/p300. Characterization of the TAZ2:E2A-AD1(1-37) complex indicated that E2A-AD1 adopts an α-helical structure and uses its ΦXXΦΦ motif to bind TAZ2. Whereas this region overlapped with the KIX recognition region, key KIX-interacting E2A-AD1 residues were exposed, suggesting that E2A-AD1 could simultaneously bind both the KIX and TAZ2 domains. However, we did not detect a ternary complex involving E2A-AD1, KIX, and TAZ2 and found that E2A containing both intact AD1 and AD2 is required to bind to CBP/p300. Our findings highlight the structural plasticity and promiscuity of E2A-AD1 and suggest that E2A binds both the TAZ2 and KIX domains of CBP/p300 through AD1 and AD2.


Subject(s)
CREB-Binding Protein/chemistry , E1A-Associated p300 Protein/genetics , Protein Domains/genetics , Transcription Factor 3/chemistry , B-Lymphocytes/chemistry , B-Lymphocytes/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/ultrastructure , E1A-Associated p300 Protein/chemistry , E1A-Associated p300 Protein/ultrastructure , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Homeodomain Proteins/ultrastructure , Humans , Mutation/genetics , Oncogene Proteins, Fusion/chemistry , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/ultrastructure , Protein Binding/genetics , Protein Conformation , Transcription Factor 3/genetics , Transcription Factor 3/ultrastructure
5.
Proc Natl Acad Sci U S A ; 116(27): 13320-13329, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31209056

ABSTRACT

Cyclic AMP (cAMP) phosphodiesterase-4 (PDE4) enzymes degrade cAMP and underpin the compartmentalization of cAMP signaling through their targeting to particular protein complexes and intracellular locales. We describe the discovery and characterization of a small-molecule compound that allosterically activates PDE4 long isoforms. This PDE4-specific activator displays reversible, noncompetitive kinetics of activation (increased Vmax with unchanged Km), phenocopies the ability of protein kinase A (PKA) to activate PDE4 long isoforms endogenously, and requires a dimeric enzyme assembly, as adopted by long, but not by short (monomeric), PDE4 isoforms. Abnormally elevated levels of cAMP provide a critical driver of the underpinning molecular pathology of autosomal dominant polycystic kidney disease (ADPKD) by promoting cyst formation that, ultimately, culminates in renal failure. Using both animal and human cell models of ADPKD, including ADPKD patient-derived primary cell cultures, we demonstrate that treatment with the prototypical PDE4 activator compound lowers intracellular cAMP levels, restrains cAMP-mediated signaling events, and profoundly inhibits cyst formation. PDE4 activator compounds thus have potential as therapeutics for treating disease driven by elevated cAMP signaling as well as providing a tool for evaluating the action of long PDE4 isoforms in regulating cAMP-mediated cellular processes.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Animals , Cell Line , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/drug effects , Dogs , Enzyme Activation/drug effects , Humans , Madin Darby Canine Kidney Cells , Phosphorylation , Polycystic Kidney Diseases/metabolism , Protein Isoforms
6.
FEBS Open Bio ; 4: 923-7, 2014.
Article in English | MEDLINE | ID: mdl-25426411

ABSTRACT

Phosphorylated heat shock protein 20 (HSP20) is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20-phosphodiesterase 4D (PDE4D) complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20-PDE4D interaction leads to attenuation of pathological cardiac remodelling.

7.
J Cell Sci ; 127(Pt 24): 5303-16, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25359883

ABSTRACT

Eps8 is an actin regulatory scaffold protein whose expression is increased in squamous cell carcinoma (SCC) cells. It forms a complex with both focal adhesion kinase (FAK, also known as PTK2) and Src in SCC cells derived from skin carcinomas induced by administration of the chemical DMBA followed by TPA (the DMBA/TPA model). Here, we describe two new roles for Eps8. Firstly, it controls the spatial distribution of active Src in a FAK-dependent manner. Specifically, Eps8 participates in, and regulates, a biochemical complex with Src and drives trafficking of Src to autophagic structures that SCC cells use to cope with high levels of active Src when FAK is absent. Secondly, when FAK is expressed in SCC cells, thereby meaning active Src becomes tethered at focal adhesion complexes, Eps8 is also recruited to focal adhesions and is required for FAK-dependent polarization and invasion. Therefore, Eps8 is a crucial mediator of Src- and FAK-regulated processes; it participates in specific biochemical complexes and promotes actin re-arrangements that determine the spatial localization of Src, and modulates the functions of Src and FAK during invasive migration.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Focal Adhesion Protein-Tyrosine Kinases/metabolism , src-Family Kinases/metabolism , 3T3 Cells , Actins/metabolism , Amino Acid Sequence , Animals , Autophagy , Cell Line, Tumor , Cell Movement , Cell Polarity , Focal Adhesion Protein-Tyrosine Kinases/chemistry , Focal Adhesions/metabolism , Gene Knockdown Techniques , Humans , Mice , Molecular Sequence Data , Neoplasm Invasiveness , Peptides/chemistry , Peptides/metabolism , Phagosomes/metabolism , Phenotype , Protein Binding , Protein Transport , Up-Regulation
8.
Photosynth Res ; 114(2): 121-31, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23161229

ABSTRACT

The UV-B photoreceptor UVR8 regulates expression of genes in response to UV-B, some encoding chloroplast proteins, but the importance of UVR8 in maintaining photosynthetic competence is unknown. The maximum quantum yield of PSII (F (v)/F(m)) and the operating efficiency of PSII (Φ(PSII)) were measured in wild-type and uvr8 mutant Arabidopsis thaliana. The importance of specific UVR8-regulated genes in maintaining photosynthetic competence was examined using mutants. Both F (v)/F(m) and Φ(PSII) decreased when plants were exposed to elevated UV-B, in general more so in uvr8 mutant plants than wild-type. UV-B increased the level of psbD-BLRP (blue light responsive promoter) transcripts, encoding the PSII D2 protein. This increase was mediated by the UVR8-regulated chloroplast RNA polymerase sigma factor SIG5, but SIG5 was not required to maintain photosynthetic efficiency at elevated UV-B. Levels of the D1 protein of PSII decreased markedly when plants were exposed to elevated UV-B, but there was no significant difference between wild-type and uvr8 under conditions where the mutant showed increased photoinhibition. The results show that UVR8 promotes photosynthetic efficiency at elevated levels of UV-B. Loss of the DI polypeptide is probably important in causing photoinhibition, but does not entirely explain the reduced photosynthetic efficiency of the uvr8 mutant compared to wild-type.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Chromosomal Proteins, Non-Histone/physiology , Photosynthesis/physiology , Arabidopsis/physiology , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Mutation , Photosystem II Protein Complex/physiology , Sigma Factor/genetics , Sigma Factor/metabolism , Sigma Factor/physiology , Sunlight , Ultraviolet Rays
9.
J Mol Biol ; 423(4): 600-12, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-22867705

ABSTRACT

Cotranslational targeting of membrane proteins is mediated by the universally conserved signal recognition particle (SRP). In eukaryotes, SRP attenuates translation during targeting; however, in prokaryotes, a simplified SRP is believed to carry out targeting during continuing translation. Here, we show a detailed stepwise analysis of the targeting of subunit c of the F(0) component of the bacterial ATP synthase (F(0)c) to the inner membrane. We show that the first transmembrane (TM) signal-anchor domain of F(0)c forms a compacted structure within the distal portion of the ribosome tunnel. This structure is formed just prior to the interaction with SRP. In the absence of SRP this structure is lost as the TM domain exits the tunnel; however in the presence of SRP it is stabilized. Our results suggest differences in early protein folding of substrates for prokaryotic SRP-dependent membrane protein targeting pathways, from that of eukaryotic SRP targeting. These results imply that early TM domain recognition by targeting factors acts to ensure that the efficiency of membrane targeting is maintained.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism , Proton-Translocating ATPases/chemistry , Proton-Translocating ATPases/metabolism , Ribosomes/metabolism , Signal Recognition Particle/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Membrane Proteins/chemistry , Protein Biosynthesis , Protein Folding , Protein Structure, Tertiary , Protein Transport , Ribosome Subunits, Large, Bacterial/metabolism , Ribosome Subunits, Large, Bacterial/ultrastructure , Ribosomes/chemistry , Ribosomes/ultrastructure , Signal Recognition Particle/chemistry , Signal Transduction
10.
FEBS Lett ; 586(11): 1631-7, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22673573

ABSTRACT

The cyclic AMP-specific phosphodiesterase PDE8 has been shown to play a pivotal role in important processes such as steroidogenesis, T cell adhesion, regulation of heart beat and chemotaxis. However, no information exists on how the activity of this enzyme is regulated. We show that under elevated cAMP conditions, PKA acts to phosphorylate PDE8A on serine 359 and this action serves to enhance the activity of the enzyme. This is the first indication that PDE8 activity can be modulated by a kinase, and we propose that this mechanism forms a feedback loop that results in the restoration of basal cAMP levels.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , 3',5'-Cyclic-AMP Phosphodiesterases/chemistry , Amino Acid Sequence , Binding Sites , Enzyme Activation , HeLa Cells , Humans , Molecular Imaging , Molecular Sequence Data , Phosphorylation , Protein Array Analysis , Serine , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...