Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35977081

ABSTRACT

Biofilms are multicellular communities of microbial cells that grow on natural and synthetic surfaces. They have become the major cause for hospital-acquired infections because once they form, they are very difficult to eradicate. Nanotechnology offers means to fight biofilm-associated infections. Here, we report on the synthesis of silver nanoparticles (AgNPs) with the antibacterial ligand epigallocatechin gallate (EGCG) and the formation of a lysozyme protein corona on AgNPs, as shown by UV-vis, dynamic light scattering, and circular dichroism analyses. We further tested the activity of EGCG-AgNPs and their lysozyme bioconjugates on the viability of Bacillus subtilis cells and biofilm formation. Our results showed that, although EGCG-AgNPs presented no antibacterial activity on planktonic B. subtilis cells, they inhibited B. subtilis biofilm formation at concentrations larger than 40 nM, and EGCG-AgNP-lysozyme bioconjugates inhibited biofilms at concentrations above 80 nM. Cytotoxicity assays performed with human cells showed a reverse trend, where EGCG-AgNPs barely affected human cell viability while EGCG-AgNP-lysozyme bioconjugates severely hampered viability. Our results therefore demonstrate that EGCG-AgNPs may be used as noncytotoxic antibiofilm agents.

2.
Small ; 5(7): 832-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19242949

ABSTRACT

The mechanics of cellular membranes are governed by a non-equilibrium composite framework consisting of the semiflexible filamentous cytoskeleton and extracellular matrix proteins linked to the lipid bilayer. While elasticity information of plasma membranes has mainly been obtained from whole cell analysis, techniques that allow addressing local mechanical properties of cell membranes are desirable to learn how their lipid and protein composition is reflected in the elastic behavior on local length scales. Introduced here is an approach based on basolateral membranes of polar epithelial Madin-Darby canine kidney (MDCK) II cells, prepared on a highly ordered porous substrate that allows elastic mapping on a submicrometer-length scale. A strong correlation between the density of actin filaments and the measured membrane elasticity is found. Spatially resolved indentation experiments carried out with atomic force and fluorescence microscope permit relation of the supramolecular structure to the elasticity of cellular membranes. It is shown that the elastic response of the pore spanning cell membranes is governed by local bending modules rather than lateral tension.


Subject(s)
Actin Cytoskeleton/physiology , Cell Membrane/chemistry , Actin Cytoskeleton/ultrastructure , Animals , Cell Line , Cell Membrane/ultrastructure , Cell Polarity/physiology , Dogs , Elasticity , Mechanotransduction, Cellular/physiology , Microscopy, Atomic Force/methods , Microscopy, Fluorescence/methods , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...