Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Sci ; 199(2): 203-209, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38521541

ABSTRACT

Drug-induced liver injury (DILI) is a challenge in clinical medicine and drug development. Highly sensitive novel biomarkers have been identified for detecting DILI following a paracetamol overdose. The study objective was to evaluate biomarker performance in a 14-day trial of therapeutic dose paracetamol. The PATH-BP trial was a double-blind, placebo-controlled, crossover study. Individuals (n = 110) were randomized to receive 1 g paracetamol 4× daily or matched placebo for 2 weeks followed by a 2-week washout before crossing over to the alternate treatment. Blood was collected on days 0 (baseline), 4, 7, and 14 in both arms. Alanine transaminase (ALT) activity was measured in all patients. MicroRNA-122 (miR-122), cytokeratin-18 (K18), and glutamate dehydrogenase (GLDH) were measured in patients who had an elevated ALT on paracetamol treatment (≥50% from baseline). ALT increased in 49 individuals (45%). All 3 biomarkers were increased at the time of peak ALT (K18 paracetamol arm: 18.9 ± 9.7 ng/ml, placebo arm: 11.1 ± 5.4 ng/ml, ROC-AUC = 0.80, 95% CI 0.71-0.89; miR-122: 15.1 ± 12.9fM V 4.9 ± 4.7fM, ROC-AUC = 0.83, 0.75-0.91; and GLDH: 24.6 ± 31.1U/l V 12.0 ± 11.8U/l, ROC-AUC = 0.66, 0.49-0.83). All biomarkers were correlated with ALT (K18 r = 0.68, miR-122 r = 0.67, GLDH r = 0.60). To assess sensitivity, biomarker performance was analyzed on the visit preceding peak ALT (mean 3 days earlier). K18 identified the subsequent ALT increase (K18 ROC-AUC = 0.70, 0.59-0.80; miR-122 ROC-AUC = 0.60, 0.49-0.72, ALT ROC-AUC = 0.59, 0.48-0.70; GLDH ROC-AUC = 0.70, 0.50-0.90). Variability was lowest for ALT and K18. In conclusion, K18 was more sensitive than ALT, miR-122, or GLDH and has potential significant utility in the early identification of DILI in trials and clinical practice.


Subject(s)
Acetaminophen , Alanine Transaminase , Biomarkers , Chemical and Drug Induced Liver Injury , Cross-Over Studies , Keratin-18 , Humans , Alanine Transaminase/blood , Biomarkers/blood , Male , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/etiology , Female , Double-Blind Method , Keratin-18/blood , Adult , Middle Aged , MicroRNAs/blood , Young Adult , Glutamate Dehydrogenase/blood , Analgesics, Non-Narcotic
2.
Brain Commun ; 3(1): fcaa148, 2021.
Article in English | MEDLINE | ID: mdl-33738443

ABSTRACT

Acetyl-dl-leucine is a derivative of the branched chain amino acid leucine. In observational clinical studies, acetyl-dl-leucine improved symptoms of ataxia, in particular in patients with the lysosomal storage disorder, Niemann-Pick disease type C1. Here, we investigated acetyl-dl-leucine and its enantiomers acetyl-l-leucine and acetyl-d-leucine in symptomatic Npc1-/- mice and observed improvement in ataxia with both individual enantiomers and acetyl-dl-leucine. When acetyl-dl-leucine and acetyl-l-leucine were administered pre-symptomatically to Npc1-/- mice, both treatments delayed disease progression and extended life span, whereas acetyl-d-leucine did not. These data are consistent with acetyl-l-leucine being the neuroprotective enantiomer. Altered glucose and antioxidant metabolism were implicated as one of the potential mechanisms of action of the l-enantiomer in Npc1-/- mice. When the standard of care drug miglustat and acetyl-dl-leucine were used in combination significant synergy resulted. In agreement with these pre-clinical data, when Niemann-Pick disease type C1 patients were evaluated after 12 months of acetyl-dl-leucine treatment, rates of disease progression were slowed, with stabilization or improvement in multiple neurological domains. A beneficial effect of acetyl-dl-leucine on gait was also observed in this study in a mouse model of GM2 gangliosidosis (Sandhoff disease) and in Tay-Sachs and Sandhoff disease patients in individual-cases of off-label-use. Taken together, we have identified an unanticipated neuroprotective effect of acetyl-l-leucine and underlying mechanisms of action in lysosomal storage diseases, supporting its further evaluation in clinical trials in lysosomal disorders.

3.
Orphanet J Rare Dis ; 13(1): 143, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30115089

ABSTRACT

BACKGROUND: Niemann-Pick disease type C (NPC) is a lysosomal storage disease with a heterogeneous neurodegenerative clinical course. Multiple therapies are in clinical trials and inclusion criteria are currently mainly based on age and neurological signs, not taking into consideration differential individual rates of disease progression. RESULTS: In this study, we have evaluated a simple metric, denoted annual severity increment score (ASIS), that measures rate of disease progression and could easily be used in clinical practice. We show that ASIS is stable over several years and can be used to stratify patients for clinical trials. It achieves greater homogeneity of the study cohort relative to age-based inclusion and provides an evidence-based approach for establishing inclusion/exclusion criteria. In addition, we show that ASIS has prognostic value and demonstrate that treatment with an experimental therapy - acetyl-DL-leucine - is associated with a reduction in ASIS scores. CONCLUSION: ASIS has the potential to be a useful metric for clinical monitoring, trial recruitment, for prognosis and measuring response to therapy.


Subject(s)
Leucine/analogs & derivatives , Niemann-Pick Disease, Type C/diagnosis , Niemann-Pick Disease, Type C/drug therapy , Adult , Clinical Trials as Topic , Cohort Studies , Female , Humans , Leucine/therapeutic use , Lysosomal Storage Diseases/diagnosis , Lysosomal Storage Diseases/drug therapy , Male , Surveys and Questionnaires , Young Adult
4.
Wellcome Open Res ; 1: 18, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-28008422

ABSTRACT

BACKGROUND: Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. METHODS: The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. RESULTS: Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. CONCLUSION: These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies.

5.
Methods Cell Biol ; 126: 287-304, 2015.
Article in English | MEDLINE | ID: mdl-25665451

ABSTRACT

Phagocytosis is a critical biological activity through which the host can protect itself from infectious and non-infectious environmental particles and remove unwanted host cells in order to maintain tissue homeostasis. Phagocytosis is an ancient, conserved process that is apparent in all multicellular organisms. The process of phagocytosis requires the recognition of ligands on particles by specific receptors expressed by the phagocyte that promote internalization via reorganization of cytoskeletal elements and directed formation of the phagosome. Subsequent phagosome-lysosome fusion delivers the contents for destruction and recycling in the acidic compartment. Significantly, receptor engagement and uptake can also trigger intracellular signaling pathways that initiate appropriate innate immune and pro-inflammatory or anti-inflammatory responses dependent upon the nature of the particle. The important benefits of phagocytosis to host survival are exemplified by the detrimental effects to health that occur when phagocytic efficiency is diminished. In an overview, we discuss the different experimental approaches or options that can be considered when investigating and determining the characteristics and quantification of phagocytic activity. These criteria will include choice of phagocytic cell type, selection, and method of labeling of particle for monitoring internalization, targeting of particles to specific receptors, and quantification of ingestion either at the single cell or at the population level. We provide two detailed examples of phagocytosis assays.


Subject(s)
Phagocytes/physiology , Phagocytosis , Animals , Cell Line , Cytological Techniques , Erythrocytes/physiology , Humans , Mycobacterium bovis/physiology , Receptors, Immunologic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...