Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 849, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992061

ABSTRACT

Hereditary fructose intolerance (HFI) is a painful and potentially lethal genetic disease caused by a mutation in aldolase B resulting in accumulation of fructose-1-phosphate (F1P). No cure exists for HFI and treatment is limited to avoid exposure to fructose and sugar. Using aldolase B deficient mice, here we identify a yet unrecognized metabolic event activated in HFI and associated with the progression of the disease. Besides the accumulation of F1P, here we show that the activation of the purine degradation pathway is a common feature in aldolase B deficient mice exposed to fructose. The purine degradation pathway is a metabolic route initiated by adenosine monophosphate deaminase 2 (AMPD2) that regulates overall energy balance. We demonstrate that very low amounts of fructose are sufficient to activate AMPD2 in these mice via a phosphate trap. While blocking AMPD2 do not impact F1P accumulation and the risk of hypoglycemia, its deletion in hepatocytes markedly improves the metabolic dysregulation induced by fructose and corrects fat and glycogen storage while significantly increasing the voluntary tolerance of these mice to fructose. In summary, we provide evidence for a critical pathway activated in HFI that could be targeted to improve the metabolic consequences associated with fructose consumption.


Subject(s)
AMP Deaminase , Fructose Intolerance , Fructose-Bisphosphate Aldolase , Fructose , Animals , Fructose Intolerance/metabolism , Fructose Intolerance/genetics , Mice , AMP Deaminase/genetics , AMP Deaminase/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Fructose-Bisphosphate Aldolase/genetics , Fructose/metabolism , Liver Diseases/metabolism , Liver Diseases/etiology , Liver Diseases/genetics , Male , Mice, Knockout , Mice, Inbred C57BL , Disease Models, Animal , Liver/metabolism , Hepatocytes/metabolism , Hepatocytes/drug effects , Energy Metabolism/drug effects , Fructosephosphates/metabolism
2.
bioRxiv ; 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37502951

ABSTRACT

Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) remain poorly treated inflammatory lung disorders. Both reactive oxygen species (ROS) and macrophages are involved in the pathogenesis of ALI/ARDS. Xanthine oxidoreductase (XOR) is an ROS generator that plays a central role in the inflammation that contributes to ALI. To elucidate the role of macrophage-specific XOR in endotoxin induced ALI, we developed a conditional myeloid specific XOR knockout in mice. Myeloid specific ablation of XOR in LPS insufflated mice markedly attenuated lung injury demonstrating the essential role of XOR in this response. Macrophages from myeloid specific XOR knockout exhibited loss of inflammatory activation and increased expression of anti-inflammatory genes/proteins. Transcriptional profiling of whole lung tissue of LPS insufflated XOR fl/fl//LysM-Cre mice demonstrated an important role for XOR in expression and activation of the NLRP3 inflammasome and acquisition of a glycolytic phenotype by inflammatory macrophages. These results identify XOR as an unexpected link between macrophage redox status, mitochondrial respiration and inflammatory activation.

3.
Redox Biol ; 51: 102271, 2022 05.
Article in English | MEDLINE | ID: mdl-35228125

ABSTRACT

Serum uric acid (SUA) is significantly elevated in obesity, gout, type 2 diabetes mellitus, and the metabolic syndrome and appears to contribute to the renal, cardiovascular and pulmonary comorbidities that are associated with these disorders. Most previous studies have focused on the pathophysiologic effects of high levels of uric acid (hyperuricemia). More recently, research has also shifted to the impact of hypouricemia, with multiple studies showing the potentially damaging effects that can be caused by abnormally low levels of SUA. Along with these observations, recent inconclusive data from human studies evaluating the treatment of hyperuricemia with xanthine oxidoreductase (XOR) inhibitors have added to the debate about the causal role of UA in human disease processes. SUA, which is largely derived from hepatic degradation of purines, appears to exert both systemic pro-inflammatory effects that contribute to disease and protective antioxidant properties. XOR, which catalyzes the terminal two steps of purine degradation, is the major source of both reactive oxygen species (O2.-, H2O2) and UA. This review will summarize the evidence that both elevated and low SUA may be risk factors for renal, cardiovascular and pulmonary comorbidities. It will also discuss the mechanisms through which modulation of either XOR activity or SUA may contribute to vascular redox hemostasis. We will address future research studies to better account for the differential effects of high versus low SUA in the hope that this will identify new evidence-based approaches for the management of hyperuricemia.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperuricemia , Diabetes Mellitus, Type 2/drug therapy , Enzyme Inhibitors , Humans , Hydrogen Peroxide , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Uric Acid/metabolism
4.
Pulm Circ ; 11(4): 20458940211055996, 2021.
Article in English | MEDLINE | ID: mdl-34777785

ABSTRACT

Sickle cell anemia and ß-thalassemia intermedia are very different genetically determined hemoglobinopathies predisposing to pulmonary hypertension. The etiologies responsible for the associated development of pulmonary hypertension in both diseases are multi-factorial with extensive mechanistic contributors described. Both sickle cell anemia and ß-thalassemia intermedia present with intra and extravascular hemolysis. And because sickle cell anemia and ß-thalassemia intermedia share features of extravascular hemolysis, macrophage iron excess and anemia we sought to characterize the common features of the pulmonary hypertension phenotype, cardiac mechanics, and function as well as lung and right ventricular metabolism. Within the concept of iron, we have defined a unique pulmonary vascular iron accumulation in lungs of sickle cell anemia pulmonary hypertension patients at autopsy. This observation is unlike findings in idiopathic or other forms of pulmonary arterial hypertension. In this study, we hypothesized that a common pathophysiology would characterize the pulmonary hypertension phenotype in sickle cell anemia and ß-thalassemia intermedia murine models. However, unlike sickle cell anemia, ß-thalassemia is also a disease of dyserythropoiesis, with increased iron absorption and cellular iron extrusion. This process is mediated by high erythroferrone and low hepcidin levels as well as dysregulated iron transport due transferrin saturation, so there may be differences as well. Herein we describe common and divergent features of pulmonary hypertension in aged Berk-ss (sickle cell anemia) and Hbbth/3+ (intermediate ß-thalassemia) mice and suggest translational utility as proof-of-concept models to study pulmonary hypertension therapeutics specific to genetic anemias.

5.
Pulm Circ ; 11(4): 20458940211056806, 2021.
Article in English | MEDLINE | ID: mdl-34777787

ABSTRACT

Macrophages are a heterogeneous population with both pro- and anti-inflammatory functions play an essential role in maintaining tissue homeostasis, promoting inflammation under pathological conditions, and tissue repair after injury. In pulmonary hypertension, the M1 phenotype is more pro-inflammatory compared to the M2 phenotype, which is involved in tissue repair. The role of macrophages in the initiation and progression of pulmonary hypertension is well studied. However, their role in the regression of established pulmonary hypertension is not well known. Rats chronically exposed to hemoglobin (Hb) plus hypoxia (HX) share similarities to humans with pulmonary hypertension associated with hemolytic disease, including the presence of a unique macrophage phenotype surrounding distal vessels that are associated with vascular remodeling. These lung macrophages are characterized by high iron content, HO-1, ET-1, and IL-6, and are recruited from the circulation. Depletion of macrophages in this model prevents the development of pulmonary hypertension and vascular remodeling. In this study, we specifically investigate the regression of pulmonary hypertension over a four-week duration after rats were removed from Hb + HX exposure with and without gadolinium chloride administration. Withdrawal of Hb + HX reversed systolic pressures and right ventricular function after Hb + Hx exposure in four weeks. Our data show that depleting circulating monocytes/macrophages during reversal prevents complete recovery of right ventricular systolic pressure and vascular remodeling in this rat model of pulmonary hypertension at four weeks post exposure. The data presented offer a novel insight into the role of macrophages in the processes of pulmonary hypertension regression in a rodent model of Hb + Hx-driven disease.

6.
Cancer Metab ; 9(1): 32, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34526149

ABSTRACT

BACKGROUND: Recent studies suggest that fructose, as well as its metabolite, uric acid, have been associated with increased risk for both cancer incidence and growth. Both substances are known to cause oxidative stress to mitochondria and to reduce adenosine triphosphate (ATP) production by blocking aconitase in the Krebs cycle. The uricase mutation that occurred in the Miocene has been reported to increase serum uric acid and to amplify the effects of fructose to stimulate fat accumulation. Here we tested whether the uricase mutation can also stimulate tumor growth. METHODS: Experiments were performed in mice in which uricase was inactivated by either knocking out the gene or by inhibiting uricase with oxonic acid. We also studied mice transgenic for uricase. These mice were injected with breast cancer cells and followed for 4 weeks. RESULTS: The inhibition or knockout of uricase was associated with a remarkable increase in tumor growth and metastases. In contrast, transgenic uricase mice showed reduced tumor growth. CONCLUSION: A loss of uricase increases the risk for tumor growth. Prior studies have shown that the loss of the mutation facilitated the ability of fructose to increase fat which provided a survival advantage for our ancestors that came close to extinction from starvation in the mid Miocene. Today, however, excessive fructose intake is rampant and increasing our risk not only for obesity and metabolic syndrome, but also cancer. Obesity-associated cancer may be due, in part, to a mutation 15 million years ago that acted as a thrifty gene.

7.
Front Immunol ; 12: 640718, 2021.
Article in English | MEDLINE | ID: mdl-33868271

ABSTRACT

The recruitment and subsequent polarization of inflammatory monocytes/macrophages in the perivascular regions of pulmonary arteries is a key feature of pulmonary hypertension (PH). However, the mechanisms driving macrophage polarization within the adventitial microenvironment during PH progression remain unclear. We previously established that reciprocal interactions between fibroblasts and macrophages are essential in driving the activated phenotype of both cell types although the signals involved in these interactions remain undefined. We sought to test the hypothesis that adventitial fibroblasts produce a complex array of metabolites and proteins that coordinately direct metabolomic and transcriptomic re-programming of naïve macrophages to recapitulate the pathophysiologic phenotype observed in PH. Media conditioned by pulmonary artery adventitial fibroblasts isolated from pulmonary hypertensive (PH-CM) or age-matched control (CO-CM) calves were used to activate bone marrow derived macrophages. RNA-Seq and mass spectrometry-based metabolomics analyses were performed. Fibroblast conditioned medium from patients with idiopathic pulmonary arterial hypertension or controls were used to validate transcriptional findings. The microenvironment was targeted in vitro using a fibroblast-macrophage co-culture system and in vivo in a mouse model of hypoxia-induced PH. Both CO-CM and PH-CM actively, yet distinctly regulated macrophage transcriptomic and metabolomic profiles. Network integration revealed coordinated rewiring of pro-inflammatory and pro-remodeling gene regulation in concert with altered mitochondrial and intermediary metabolism in response to PH-CM. Pro-inflammation and metabolism are key regulators of macrophage phenotype in vitro, and are closely related to in vivo flow sorted lung interstitial/perivascular macrophages from hypoxic mice. Metabolic changes are accompanied by increased free NADH levels and increased expression of a metabolic sensor and transcriptional co-repressor, C-terminal binding protein 1 (CtBP1), a mechanism shared with adventitial PH-fibroblasts. Targeting the microenvironment created by both cell types with the CtBP1 inhibitor MTOB, inhibited macrophage pro-inflammatory and metabolic re-programming both in vitro and in vivo. In conclusion, coordinated transcriptional and metabolic reprogramming is a critical mechanism regulating macrophage polarization in response to the complex adventitial microenvironment in PH. Targeting the adventitial microenvironment can return activated macrophages toward quiescence and attenuate pathological remodeling that drives PH progression.


Subject(s)
Cellular Microenvironment/physiology , Hypertension, Pulmonary/physiopathology , Macrophage Activation/physiology , Macrophages, Alveolar/metabolism , Animals , Cattle , Cells, Cultured , Cellular Reprogramming/drug effects , Cellular Reprogramming/physiology , Coculture Techniques , Culture Media, Conditioned/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Hypertension, Pulmonary/metabolism , Macrophages, Alveolar/drug effects , Metabolome , Mice , Mice, Inbred C57BL , Transcriptome
8.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119039, 2021 06.
Article in English | MEDLINE | ID: mdl-33857568

ABSTRACT

Although a high cumulative dose of Doxorubicin (Dox) is known to cause cardiotoxicity, there is still a lack of understanding of the subcellular basis of this drug-induced cardiomyopathy. Differential effects of Dox on mitochondria and endoplasmic reticulum (ER) were examined in cardiomyocytes, tumor cells, implanted tumors and hearts of normal as well as tumor-bearing animals. Dox increased mitochondrial (Mito) Bax activation at 3 h in the cardiomyocyte without change in the DNA damage inducible transcriptor-3 (DDIT3) expression in the ER. Increased DDIT3 in these Dox-treated cardiomyocytes at 24 h suggested that increased MitoBax may have promoted ER stress related changes in DDIT3. Dissociation of immunoglobulin-binding protein (Bip) from activating transcription factor 6 (ATF6)-Bip complex in the ER was observed as an adaptive response to Dox. In contrast, breast cancer MCF7 cells showed an ER stress response to Dox with increased DDIT3 as early as 3 h which may have triggered a positive feedback activation of ATF6 at 12 and 24 h and promoted Calnexin. At these later time points, increased Bax activation in cancer cells suggested that MitoBax may be controlled by DDIT3 or by Calnexin. DDIT3 response in tumors was evoked by Dox, however this response was inversely correlated with increased Bip and Bax expression in hearts from tumor bearing animals. It is suggested that in Dox-induced cardiotoxicity both mitochondrial and ER stresses play an integral role through a mutual interaction where an inhibition of DDIT3 or Calnexin may also be crucial to achieve Dox resistance in cardiomyocytes.


Subject(s)
Apoptosis/drug effects , Doxorubicin/toxicity , Endoplasmic Reticulum Stress/drug effects , Activating Transcription Factor 6/metabolism , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Cardiomyopathies/metabolism , Cardiotoxicity/pathology , Cell Line, Tumor , Doxorubicin/metabolism , Doxorubicin/pharmacology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/physiology , Endoplasmic Reticulum Stress/physiology , Female , Humans , Male , Mitochondria/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Neoplasms/metabolism , Neoplasms/physiopathology , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Rats, Wistar , Reactive Oxygen Species/metabolism , Transcription Factor CHOP/metabolism
10.
Am J Respir Crit Care Med ; 201(2): 224-239, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31545648

ABSTRACT

Rationale: Pulmonary hypertension (PH) is a life-threatening cardiopulmonary disorder in which inflammation and immunity have emerged as critical early pathogenic elements. Although proinflammatory processes in PH and pulmonary arterial hypertension (PAH) are the focus of extensive investigation, the initiating mechanisms remain elusive.Objectives: We tested whether activation of the complement cascade is critical in regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and can serve as a prognostic biomarker of outcome in human PAH.Methods: We used immunostaining of lung tissues from experimental PH models and patients with PAH, analyses of genetic murine models lacking specific complement components or circulating immunoglobulins, cultured human pulmonary adventitial fibroblasts, and network medicine analysis of a biomarker risk panel from plasma of patients with PAH.Measurements and Main Results: Pulmonary perivascular-specific activation of the complement cascade was identified as a consistent critical determinant of PH and PAH in experimental animal models and humans. In experimental hypoxic PH, proinflammatory and pro-proliferative responses were dependent on complement (alternative pathway and component 5), and immunoglobulins, particularly IgG, were critical for activation of the complement cascade. We identified Csf2/GM-CSF as a primary complement-dependent inflammatory mediator. Furthermore, using network medicine analysis of a biomarker risk panel from plasma of patients with PAH, we demonstrated that complement signaling can serve as a prognostic factor for clinical outcome in PAH.Conclusions: This study establishes immunoglobulin-driven dysregulated complement activation as a critical pathobiological mechanism regulating proinflammatory and pro-proliferative processes in the initiation of experimental hypoxic PH and demonstrates complement signaling as a critical determinant of clinical outcome in PAH.


Subject(s)
Complement Activation/immunology , Fibroblasts/immunology , Hypertension, Pulmonary/immunology , Immunoglobulin G/immunology , Vascular Remodeling/immunology , Animals , Complement C3/immunology , Complement C5/immunology , Complement Factor B/immunology , Complement Pathway, Alternative/immunology , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Hypertension, Pulmonary/etiology , Hypoxia/complications , Immunoglobulins/immunology , Inflammation , Mice , Mice, Knockout , Prognosis , Pulmonary Arterial Hypertension/immunology , Rats
12.
JCI Insight ; 4(15)2019 08 08.
Article in English | MEDLINE | ID: mdl-31391342

ABSTRACT

Circulating macrophages recruited to the lung contribute to pulmonary vascular remodeling in various forms of pulmonary hypertension (PH). In this study we investigated a macrophage phenotype characterized by intracellular iron accumulation and expression of antioxidant (HO-1), vasoactive (ET-1), and proinflammatory (IL-6) mediators observed in the lung tissue of deceased sickle cell disease (SCD) patients with diagnosed PH. To this end, we evaluated an established rat model of group 5 PH that is simultaneously exposed to free hemoglobin (Hb) and hypobaric hypoxia (HX). Here, we tested the hypothesis that pulmonary vascular remodeling observed in human SCD with concomitant PH could be replicated and mechanistically driven in our rat model by a similar macrophage phenotype with iron accumulation and expression of a similar mixture of antioxidant (HO-1), vasoactive (ET-1), and inflammatory (IL-6) proteins. Our data suggest phenotypic similarities between pulmonary perivascular macrophages in our rat model and human SCD with PH, indicating a potentially novel maladaptive immune response to concomitant bouts of Hb and HX exposure. Moreover, by knocking out circulating macrophages with gadolinium trichloride (GdCl3), the response to combined Hb and hypobaric HX was significantly attenuated in rats, suggesting a critical role for macrophages in the exacerbation of SCD PH.


Subject(s)
Anemia, Sickle Cell/complications , Hemoglobins/metabolism , Hypertension, Pulmonary/immunology , Hypoxia/complications , Macrophages/immunology , Vascular Remodeling/immunology , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/immunology , Animals , Disease Models, Animal , Disease Progression , Gadolinium/administration & dosage , Humans , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/pathology , Hypoxia/blood , Hypoxia/immunology , Macrophages/drug effects , Macrophages/metabolism , Male , Pulmonary Artery/pathology , Rats
13.
Arterioscler Thromb Vasc Biol ; 38(1): 154-163, 2018 01.
Article in English | MEDLINE | ID: mdl-29191928

ABSTRACT

OBJECTIVE: Pulmonary artery smooth muscle cells (PASMCs) from neprilysin (NEP) null mice exhibit a synthetic phenotype and increased activation of Rho GTPases compared with their wild-type counterparts. Although Rho GTPases are known to promote a contractile SMC phenotype, we hypothesize that their sustained activity decreases SM-protein expression in these cells. APPROACH AND RESULTS: PASMCs isolated from wild-type and NEP-/- mice were used to assess levels of SM-proteins (SM-actin, SM-myosin, SM22, and calponin) by Western blotting, and were lower in NEP-/- PASMCs compared with wild-type. Rac and Rho (ras homology family member) levels and activity were higher in NEP-/- PASMCs, and ShRNA to Rac and Rho restored SM-protein, and attenuated the enhanced migration and proliferation of NEP-/- PASMCs. SM-gene repressors, p-Elk-1, and Klf4 (Kruppel lung factor 4), were higher in NEP-/- PASMCs and decreased by shRNA to Rac and Rho. Costimulation of wild-type PASMCs with PDGF (platelet-derived growth factor) and the NEP substrate, ET-1 (endothelin-1), increased Rac and Rho activity, and decreased SM-protein levels mimicking the NEP knock-out phenotype. Activation of Rac and Rho and downstream effectors was observed in lung tissue from NEP-/- mice and humans with chronic obstructive pulmonary disease. CONCLUSIONS: Sustained Rho activation in NEP-/- PASMCs is associated with a decrease in SM-protein levels and increased migration and proliferation. Inactivation of RhoGDI (Rho guanine dissociation inhibitor) and RhoGAP (Rho GTPase activating protein) by phosphorylation may contribute to prolonged activation of Rho in NEP-/- PASMCs. Rho GTPases may thus have a role in integration of signals between vasopeptides and growth factor receptors and could influence pathways that suppress SM-proteins to promote a synthetic phenotype.


Subject(s)
Muscle Proteins/biosynthesis , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Neprilysin/deficiency , rho GTP-Binding Proteins/metabolism , Actins/biosynthesis , Animals , Becaplermin/pharmacology , Calcium-Binding Proteins/biosynthesis , Cell Movement , Cell Proliferation , Cells, Cultured , Endothelin-1/pharmacology , Enzyme Activation , Genotype , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/biosynthesis , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Neprilysin/genetics , Phenotype , Pulmonary Artery/drug effects , Pulmonary Artery/enzymology , Pulmonary Artery/pathology , Pulmonary Disease, Chronic Obstructive/enzymology , Pulmonary Disease, Chronic Obstructive/pathology , Signal Transduction , Smooth Muscle Myosins/biosynthesis , ets-Domain Protein Elk-1/genetics , ets-Domain Protein Elk-1/metabolism , rho GTP-Binding Proteins/genetics , Calponins
14.
Am J Physiol Lung Cell Mol Physiol ; 313(6): L1047-L1057, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28839105

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a common and devastating disorder. Alcohol use disorders (AUDs) increase ARDS risk and worsen outcomes through mechanisms that may include enhancement of pulmonary oxidative stress. Alcohol consumption increases activity of the enzyme xanthine oxidoreductase (XOR) that contributes to production of both reactive oxygen species (ROS) and uric acid, a damage-associated molecular pattern. These by-products have the potential to modulate proinflammatory pathways, such as those involving cyclooxygenase (COX)-2, and to activate the nucleotide-binding domain, leucine-rich-containing family, pyrin-domain containing-3 (NLRP3) inflammasome. We sought to determine if pulmonary and systemic XOR activity was altered by AUDs. Bronchoscopy with bronchoalveolar lavage (BAL) and blood sampling was performed in otherwise healthy human subjects with AUDs and controls. Uric acid in epithelial-lining fluid, derived from BAL, was substantially higher among individuals with AUDs and did not normalize after 7 days of abstinence; serum uric acid did not differ across groups. XOR enzyme activity in fresh BAL cells and serum was significantly increased in subjects with AUDs. XOR protein in BAL cells from AUD subjects was increased in parallel with COX-2 expression, and furthermore, mRNA expression of NLRP3 inflammasome components was sustained in LPS-stimulated BAL cells from AUD subjects in conjunction with increased IL-1ß. Our data suggest that AUDs augment pulmonary and systemic XOR activity that may contribute to ROS and uric acid generation, promoting inflammation. Further investigations will be necessary to determine if XOR inhibition can mitigate alcohol-associated pulmonary oxidative stress, diminish inflammation, and improve ARDS outcomes.


Subject(s)
Alcoholism/enzymology , Lung/enzymology , Respiratory Distress Syndrome/enzymology , Xanthine Dehydrogenase/metabolism , Adult , Alcoholism/pathology , Bronchoalveolar Lavage , Cells, Cultured , Cyclooxygenase 2/metabolism , Female , Humans , Interleukin-1beta/metabolism , Lipopolysaccharides/toxicity , Lung/pathology , Male , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress , Respiratory Distress Syndrome/pathology
15.
Circulation ; 134(15): 1105-1121, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27562971

ABSTRACT

BACKGROUND: Changes in metabolism have been suggested to contribute to the aberrant phenotype of vascular wall cells, including fibroblasts, in pulmonary hypertension (PH). Here, we test the hypothesis that metabolic reprogramming to aerobic glycolysis is a critical adaptation of fibroblasts in the hypertensive vessel wall that drives proliferative and proinflammatory activation through a mechanism involving increased activity of the NADH-sensitive transcriptional corepressor C-terminal binding protein 1 (CtBP1). METHODS: RNA sequencing, quantitative polymerase chain reaction,13C-nuclear magnetic resonance, fluorescence-lifetime imaging, mass spectrometry-based metabolomics, and tracing experiments with U-13C-glucose were used to assess glycolytic reprogramming and to measure the NADH/NAD+ ratio in bovine and human adventitial fibroblasts and mouse lung tissues. Immunohistochemistry was used to assess CtBP1 expression in the whole-lung tissues. CtBP1 siRNA and the pharmacological inhibitor 4-methylthio-2-oxobutyric acid (MTOB) were used to abrogate CtBP1 activity in cells and hypoxic mice. RESULTS: We found that adventitial fibroblasts from calves with severe hypoxia-induced PH and humans with idiopathic pulmonary arterial hypertension (PH-Fibs) displayed aerobic glycolysis when cultured under normoxia, accompanied by increased free NADH and NADH/NAD+ ratios. Expression of the NADH sensor CtBP1 was increased in vivo and in vitro in fibroblasts within the pulmonary adventitia of humans with idiopathic pulmonary arterial hypertension and animals with PH and cultured PH-Fibs, respectively. Decreasing NADH pharmacologically with MTOB or genetically blocking CtBP1 with siRNA upregulated the cyclin-dependent genes (p15 and p21) and proapoptotic regulators (NOXA and PERP), attenuated proliferation, corrected the glycolytic reprogramming phenotype of PH-Fibs, and augmented transcription of the anti-inflammatory gene HMOX1. Chromatin immunoprecipitation analysis demonstrated that CtBP1 directly binds the HMOX1 promoter. Treatment of hypoxic mice with MTOB decreased glycolysis and expression of inflammatory genes, attenuated proliferation, and suppressed macrophage numbers and remodeling in the distal pulmonary vasculature. CONCLUSIONS: CtBP1 is a critical factor linking changes in cell metabolism to cell phenotype in hypoxic and other forms of PH and a therapeutic target.


Subject(s)
Alcohol Oxidoreductases/metabolism , DNA-Binding Proteins/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Fibroblasts/metabolism , Hypertension, Pulmonary/metabolism , Adventitia/metabolism , Adventitia/pathology , Alcohol Oxidoreductases/genetics , Animals , Cells, Cultured , DNA-Binding Proteins/genetics , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/pathology , Fibroblasts/pathology , Humans , Hypertension, Pulmonary/pathology , Mice , Phenotype
16.
Am J Physiol Lung Cell Mol Physiol ; 308(3): L229-52, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25416383

ABSTRACT

Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.


Subject(s)
Hypertension, Pulmonary/immunology , Vasculitis/immunology , Animals , Cell Hypoxia , Epigenesis, Genetic/immunology , Humans , Hypertension, Pulmonary/metabolism , Lung/blood supply , Lung/immunology , Macrophages, Alveolar/immunology , Signal Transduction , Vasculitis/metabolism
17.
J Immunol ; 193(2): 597-609, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24928992

ABSTRACT

Macrophage accumulation is not only a characteristic hallmark but is also a critical component of pulmonary artery remodeling associated with pulmonary hypertension (PH). However, the cellular and molecular mechanisms that drive vascular macrophage activation and their functional phenotype remain poorly defined. Using multiple levels of in vivo (bovine and rat models of hypoxia-induced PH, together with human tissue samples) and in vitro (primary mouse, rat, and bovine macrophages, human monocytes, and primary human and bovine fibroblasts) approaches, we observed that adventitial fibroblasts derived from hypertensive pulmonary arteries (bovine and human) regulate macrophage activation. These fibroblasts activate macrophages through paracrine IL-6 and STAT3, HIF1, and C/EBPß signaling to drive expression of genes previously implicated in chronic inflammation, tissue remodeling, and PH. This distinct fibroblast-activated macrophage phenotype was independent of IL-4/IL-13-STAT6 and TLR-MyD88 signaling. We found that genetic STAT3 haplodeficiency in macrophages attenuated macrophage activation, complete STAT3 deficiency increased macrophage activation through compensatory upregulation of STAT1 signaling, and deficiency in C/EBPß or HIF1 attenuated fibroblast-driven macrophage activation. These findings challenge the current paradigm of IL-4/IL-13-STAT6-mediated alternative macrophage activation as the sole driver of vascular remodeling in PH, and uncover a cross-talk between adventitial fibroblasts and macrophages in which paracrine IL-6-activated STAT3, HIF1α, and C/EBPß signaling are critical for macrophage activation and polarization. Thus, targeting IL-6 signaling in macrophages by completely inhibiting C/EBPß or HIF1α or by partially inhibiting STAT3 may hold therapeutic value for treatment of PH and other inflammatory conditions characterized by increased IL-6 and absent IL-4/IL-13 signaling.


Subject(s)
Fibroblasts/immunology , Hypertension, Pulmonary/immunology , Macrophage Activation/immunology , Macrophages/immunology , Animals , Animals, Newborn , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/immunology , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cattle , Cell Line, Tumor , Cells, Cultured , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Fibroblasts/metabolism , Fibrosis/genetics , Fibrosis/immunology , Fibrosis/metabolism , Gene Expression/drug effects , Gene Expression/genetics , Gene Expression/immunology , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunoblotting , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Interleukin-6/metabolism , Interleukin-6/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophages/metabolism , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Rats, Inbred WKY , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , STAT3 Transcription Factor/metabolism
19.
Circ Res ; 114(1): 67-78, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24122720

ABSTRACT

RATIONALE: Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. OBJECTIVE: We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. METHODS AND RESULTS: We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. CONCLUSIONS: Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly proliferative, migratory, and inflammatory phenotype of hypertensive pulmonary adventitial fibroblasts. Thus, therapies directed at restoring miR-124 function, including histone deacetylase inhibitors, should be investigated.


Subject(s)
Cell Movement , Cell Proliferation , Fibroblasts/metabolism , Hypertension, Pulmonary/metabolism , MicroRNAs/metabolism , 3' Untranslated Regions , Adult , Animals , Cattle , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Familial Primary Pulmonary Hypertension , Female , Fibroblasts/physiology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Histone Deacetylases/metabolism , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Inflammation/metabolism , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Phenotype , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Protein Binding , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats , Rats, Wistar , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Signal Transduction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...