Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 51(4): 1583-1599, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36727438

ABSTRACT

Inefficient endosomal escape remains the primary barrier to the broad application of oligonucleotide therapeutics. Liver uptake after systemic administration is sufficiently robust that a therapeutic effect can be achieved but targeting extrahepatic tissues remains challenging. Prior attempts to improve oligonucleotide activity using small molecules that increase the leakiness of endosomes have failed due to unacceptable toxicity. Here, we show that the well-tolerated and orally bioavailable synthetic sphingolipid analog, SH-BC-893, increases the activity of antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) up to 200-fold in vitro without permeabilizing endosomes. SH-BC-893 treatment trapped endocytosed oligonucleotides within extra-lysosomal compartments thought to be more permeable due to frequent membrane fission and fusion events. Simultaneous disruption of ARF6-dependent endocytic recycling and PIKfyve-dependent lysosomal fusion was necessary and sufficient for SH-BC-893 to increase non-lysosomal oligonucleotide levels and enhance their activity. In mice, oral administration of SH-BC-893 increased ASO potency in the liver by 15-fold without toxicity. More importantly, SH-BC-893 enabled target RNA knockdown in the CNS and lungs of mice treated subcutaneously with cholesterol-functionalized duplexed oligonucleotides or unmodified ASOs, respectively. Together, these results establish the feasibility of using a small molecule that disrupts endolysosomal trafficking to improve the activity of oligonucleotides in extrahepatic tissues.


Subject(s)
Endosomes , Oligonucleotides , Animals , Mice , Oligonucleotides/metabolism , Endosomes/genetics , Endocytosis/physiology , Biological Transport , Oligonucleotides, Antisense/genetics , RNA, Small Interfering/genetics
2.
ACS Med Chem Lett ; 11(5): 686-690, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32435371

ABSTRACT

A synthetic sphingolipid related to a ring-constrained hydroxymethyl pyrrolidine analog of FTY720 that was known to starve cancer cells to death was chemically modified to include a series of alkoxy-tethered 3,6-substituted 1,2-pyridazines. These derivatives exhibited excellent antiproliferative activity against eight human cancer cell lines from four different cancer types. A 2.5- to 9-fold reduction in IC50 in these cell lines was observed relative to the lead compound, which lacked the appended heterocycle.

3.
Bioorg Med Chem Lett ; 29(18): 2681-2685, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31383588

ABSTRACT

Inspired by the cytotoxicity of perphenazine toward cancer cells and its ability to activate the serine/threonine protein phosphatase 2A (PP2A), we prepared series of ether-carbon linked analogs of a constrained synthetic sphingolipid analog 3, known for its cytotoxicity, nutrient transporter down-regulation and vacuolation properties, incorporating the tricyclic neuroleptics phenoxazine and phenothiazine to represent hybrid structures with possible synergistic cytotoxic activity. While the original activity of the lead compound 3 was diminished by fusion with the phenoxazine or phenothiazine tethered moieties, the corresponding 3-pyridyltetryl ether analog 10 showed cytotoxicity and nutrient transporter down-regulation similar to the lead compound 3, although it separated these PP2A-dependent phenotypes from that of vacuolation.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Oxazines/pharmacology , Phenothiazines/pharmacology , Protein Phosphatase 2/antagonists & inhibitors , Sphingolipids/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Mice , Molecular Structure , Oxazines/chemistry , Phenothiazines/chemistry , Protein Phosphatase 2/metabolism , Sphingolipids/chemistry , Structure-Activity Relationship
4.
Mol Cell Proteomics ; 18(3): 408-422, 2019 03.
Article in English | MEDLINE | ID: mdl-30482847

ABSTRACT

The anti-neoplastic sphingolipid analog SH-BC-893 starves cancer cells to death by down-regulating cell surface nutrient transporters and blocking lysosomal trafficking events. These effects are mediated by the activation of protein phosphatase 2A (PP2A). To identify putative PP2A substrates, we used quantitative phosphoproteomics to profile the temporal changes in protein phosphorylation in FL5.12 cells following incubation with SH-BC-893 or the specific PP2A inhibitor LB-100. These analyses enabled the profiling of more than 15,000 phosphorylation sites, of which 958 sites on 644 proteins were dynamically regulated. We identified 114 putative PP2A substrates including several nutrient transporter proteins, GTPase regulators (e.g. Agap2, Git1), and proteins associated with actin cytoskeletal remodeling (e.g. Vim, Pxn). To identify SH-BC-893-induced cell signaling events that disrupt lysosomal trafficking, we compared phosphorylation profiles in cells treated with SH-BC-893 or C2-ceramide, a non-vacuolating sphingolipid that does not impair lysosomal fusion. These analyses combined with functional assays uncovered the differential regulation of Akt and Gsk3b by SH-BC-893 (vacuolating) and C2-ceramide (non-vacuolating). Dynamic phosphoproteomics of cells treated with compounds affecting PP2A activity thus enabled the correlation of cell signaling with phenotypes to rationalize their mode of action.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Phosphoproteins/analysis , Piperazines/pharmacology , Protein Phosphatase 2/metabolism , Proteomics/methods , Sphingolipids/pharmacology , Animals , Cell Line, Tumor , Gene Expression Regulation/drug effects , Mice , Phosphorylation , Signal Transduction/drug effects , Sphingosine/analogs & derivatives , Sphingosine/pharmacology
5.
Mol Cell Oncol ; 5(4): e1472060, 2018.
Article in English | MEDLINE | ID: mdl-30250923

ABSTRACT

Our recent work demonstrates that inactivating mutations in phosphatase and tensin homolog (PTEN) are sufficient to drive macropinocytosis in the context of AMP-activated protein kinase (AMPK) activation. Given that blocking macropinocytosis limits PTEN-deficient prostate tumor growth, AMPK or phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) inhibitors could have therapeutic value in castration-resistant prostate cancer patients, particularly when used in combination with standard of care therapies. Abbreviations: ATG5: autophagy related 5; NHE: Na(+)/H(+) exchanger; PAK1: p21-activated kinase 1; PI3K: phosphatidylinositol-4,5-bisphosphate 3-kinase; PIP3: phosphatidylinositol (3,4,5)-trisphosphate; PIP2: phosphatidylinositol (4,5)-bisphosphate; RAC1: Rac family small GTPase 1.

6.
Nat Rev Cancer ; 18(10): 619-633, 2018 10.
Article in English | MEDLINE | ID: mdl-30097614

ABSTRACT

While cancer cell proliferation depends on access to extracellular nutrients, inadequate tumour perfusion means that glucose, amino acids and lipids are often in short supply. To overcome this obstacle to growth, cancer cells utilize multiple scavenging strategies, obtaining macromolecules from the microenvironment and breaking them down in the lysosome to produce substrates for ATP generation and anabolism. Recent studies have revealed four scavenging pathways that support cancer cell proliferation in low-nutrient environments: scavenging of extracellular matrix proteins via integrins, receptor-mediated albumin uptake and catabolism, macropinocytic consumption of multiple components of the tumour microenvironment and the engulfment and degradation of entire live cells via entosis. New evidence suggests that blocking these pathways alone or in combination could provide substantial benefits to patients with incurable solid tumours. Both US Food and Drug Administration (FDA)-approved drugs and several agents in preclinical or clinical development shut down individual or multiple scavenging pathways. These therapies may increase the extent and durability of tumour growth inhibition and/or prevent the development of resistance when used in combination with existing treatments. This Review summarizes the evidence suggesting that scavenging pathways drive tumour growth, highlights recent advances that define the oncogenic signal transduction pathways that regulate scavenging and considers the benefits and detriments of therapeutic strategies targeting scavenging that are currently under development.


Subject(s)
Neoplasms/metabolism , Nutrients/metabolism , Animals , Cell Proliferation , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/physiopathology
7.
J Cell Sci ; 131(12)2018 06 25.
Article in English | MEDLINE | ID: mdl-29848659

ABSTRACT

Endogenous sphingolipids (ceramide) and related synthetic molecules (FTY720, SH-BC-893) reduce nutrient access by decreasing cell surface expression of a subset of nutrient transporter proteins. Here, we report that these sphingolipids disrupt endocytic recycling by inactivating the small GTPase ARF6. Consistent with reported roles for ARF6 in maintaining the tubular recycling endosome, MICAL-L1-positive tubules were lost from sphingolipid-treated cells. We propose that ARF6 inactivation may occur downstream of PP2A activation since: (1) sphingolipids that fail to activate PP2A did not reduce ARF6-GTP levels; (2) a structurally unrelated PP2A activator disrupted tubular recycling endosome morphology and transporter localization; and (3) overexpression of a phosphomimetic mutant of the ARF6 GEF GRP1 prevented nutrient transporter loss. ARF6 inhibition alone was not toxic; however, the ARF6 inhibitors SecinH3 and NAV2729 dramatically enhanced the killing of cancer cells by SH-BC-893 without increasing toxicity to peripheral blood mononuclear cells, suggesting that ARF6 inactivation contributes to the anti-neoplastic actions of sphingolipids. Taken together, these studies provide mechanistic insight into how ceramide and sphingolipid-like molecules limit nutrient access and suppress tumor cell growth and survival.


Subject(s)
ADP-Ribosylation Factors/metabolism , Membrane Transport Proteins/metabolism , Nutrients/metabolism , Sphingolipids/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Transport System y+/metabolism , Cell Line, Tumor , Cytoskeletal Proteins/metabolism , Endosomes/drug effects , Endosomes/metabolism , Fingolimod Hydrochloride/pharmacology , Fusion Regulatory Protein 1, Heavy Chain/metabolism , HeLa Cells , Humans , LIM Domain Proteins/metabolism , MCF-7 Cells , Microfilament Proteins , Mixed Function Oxygenases , Sphingolipids/pharmacology
8.
Cancer Discov ; 8(7): 866-883, 2018 07.
Article in English | MEDLINE | ID: mdl-29572236

ABSTRACT

We report that PTEN-deficient prostate cancer cells use macropinocytosis to survive and proliferate under nutrient stress. PTEN loss increased macropinocytosis only in the context of AMPK activation, revealing a general requirement for AMPK in macropinocytosis and a novel mechanism by which AMPK promotes survival under stress. In prostate cancer cells, albumin uptake did not require macropinocytosis, but necrotic cell debris proved a specific macropinocytic cargo. Isotopic labeling confirmed that macropinocytosed necrotic cell proteins fueled new protein synthesis in prostate cancer cells. Supplementation with necrotic debris, but not albumin, also maintained lipid stores, suggesting that macropinocytosis can supply nutrients other than amino acids. Nontransformed prostatic epithelial cells were not macropinocytic, but patient-derived prostate cancer organoids and xenografts and autochthonous prostate tumors all exhibited constitutive macropinocytosis, and blocking macropinocytosis limited prostate tumor growth. Macropinocytosis of extracellular material by prostate cancer cells is a previously unappreciated tumor-microenvironment interaction that could be targeted therapeutically.Significance: As PTEN-deficient prostate cancer cells proliferate in low-nutrient environments by scavenging necrotic debris and extracellular protein via macropinocytosis, blocking macropinocytosis by inhibiting AMPK, RAC1, or PI3K may have therapeutic value, particularly in necrotic tumors and in combination with therapies that cause nutrient stress. Cancer Discov; 8(7); 866-83. ©2018 AACR.See related commentary by Commisso and Debnath, p. 800This article is highlighted in the In This Issue feature, p. 781.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Nutrients/metabolism , PTEN Phosphohydrolase/genetics , Pinocytosis , Prostatic Neoplasms/metabolism , Stress, Physiological , Animals , Gene Deletion , Humans , Male , Mice , Mice, Inbred C57BL
9.
J Clin Invest ; 126(11): 4088-4102, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27669461

ABSTRACT

Oncogenic mutations drive anabolic metabolism, creating a dependency on nutrient influx through transporters, receptors, and macropinocytosis. While sphingolipids suppress tumor growth by downregulating nutrient transporters, macropinocytosis and autophagy still provide cancer cells with fuel. Therapeutics that simultaneously disrupt these parallel nutrient access pathways have potential as powerful starvation agents. Here, we describe a water-soluble, orally bioavailable synthetic sphingolipid, SH-BC-893, that triggers nutrient transporter internalization and also blocks lysosome-dependent nutrient generation pathways. SH-BC-893 activated protein phosphatase 2A (PP2A), leading to mislocalization of the lipid kinase PIKfyve. The concomitant mislocalization of the PIKfyve product PI(3,5)P2 triggered cytosolic vacuolation and blocked lysosomal fusion reactions essential for LDL, autophagosome, and macropinosome degradation. By simultaneously limiting access to both extracellular and intracellular nutrients, SH-BC-893 selectively killed cells expressing an activated form of the anabolic oncogene Ras in vitro and in vivo. However, slower-growing, autochthonous PTEN-deficient prostate tumors that did not exhibit a classic Warburg phenotype were equally sensitive. Remarkably, normal proliferative tissues were unaffected by doses of SH-BC-893 that profoundly inhibited tumor growth. These studies demonstrate that simultaneously blocking parallel nutrient access pathways with sphingolipid-based drugs is broadly effective and cancer selective, suggesting a potential strategy for overcoming the resistance conferred by tumor heterogeneity.


Subject(s)
Enzyme Activators/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Protein Phosphatase 2/antagonists & inhibitors , Sphingolipids/pharmacology , Animals , Biological Transport, Active/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Mice , Mice, Knockout , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Phosphatase 2/metabolism
10.
FEBS Lett ; 590(7): 885-907, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26938658

ABSTRACT

The constitutive anabolism of cancer cells not only supports proliferation but also addicts tumor cells to a steady influx of exogenous nutrients. Limiting access to metabolic substrates could be an effective and selective means to block cancer growth. In this review, we define the pathways by which cancer cells acquire the raw materials for anabolism, highlight the actionable proteins in each pathway, and discuss the status of therapeutic interventions that disrupt nutrient acquisition. Critical open questions to be answered before apical metabolic inhibitors can be successfully and safely deployed in the clinic are also outlined. In summary, recent studies provide strong support that substrate limitation is a powerful therapeutic strategy to effectively, and safely, starve cancer cells to death.


Subject(s)
Autophagy , Caloric Restriction , Energy Metabolism , Models, Biological , Neoplasms/drug therapy , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Caloric Restriction/adverse effects , Energy Metabolism/drug effects , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/therapeutic use , Humans , Lysosomes/drug effects , Lysosomes/enzymology , Lysosomes/metabolism , Membrane Transport Modulators/adverse effects , Membrane Transport Modulators/therapeutic use , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Neoplasms/enzymology , Neoplasms/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/metabolism , Pinocytosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...