Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 2033, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32341390

ABSTRACT

Non-symmorphic chiral topological crystals host exotic multifold fermions, and their associated Fermi arcs helically wrap around and expand throughout the Brillouin zone between the high-symmetry center and surface-corner momenta. However, Fermi-arc splitting and realization of the theoretically proposed maximal Chern number rely heavily on the spin-orbit coupling (SOC) strength. In the present work, we investigate the topological states of a new chiral crystal, PtGa, which has the strongest SOC among all chiral crystals reported to date. With a comprehensive investigation using high-resolution angle-resolved photoemission spectroscopy, quantum-oscillation measurements, and state-of-the-art ab initio calculations, we report a giant SOC-induced splitting of both Fermi arcs and bulk states. Consequently, this study experimentally confirms the realization of a maximal Chern number equal to ±4 in multifold fermionic systems, thereby providing a platform to observe large-quantized photogalvanic currents in optical experiments.

2.
Adv Mater ; 32(11): e1906046, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32037624

ABSTRACT

Multifold degenerate points in the electronic structure of metals lead to exotic behaviors. These range from twofold and fourfold degenerate Weyl and Dirac points, respectively, to sixfold and eightfold degenerate points that are predicted to give rise, under modest magnetic fields or strain, to topological semimetallic behaviors. The present study shows that the nonsymmorphic compound PdSb2 hosts six-component fermions or sextuplets. Using angle-resolved photoemission spectroscopy, crossing points formed by three twofold degenerate parabolic bands are directly observed at the corner of the Brillouin zone. The group theory analysis proves that under weak spin-orbit interaction, a band inversion occurs.

3.
J Phys Condens Matter ; 30(4): 045501, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29239863

ABSTRACT

The topological phases of matter provide the opportunity to observe many exotic properties, such as the existence of 2D topological surface states in the form of Dirac cones in topological insulators and chiral transport through the open Fermi arc in Weyl semimetals. However, these properties affect the transport characteristics and, therefore, may be useful for applications only if the topological phenomena occur near the Fermi level. CaAgAs is a promising candidate for which the ab initio calculations predict line-nodes at the Fermi energy. However, the compound transforms into a topological insulator on considering spin-orbit interaction. In this study, we investigated the electronic structure of CaAgAs with angle-resolved photoemission spectroscopy (ARPES), ab initio calculations, and transport measurements. The results from ARPES show that the bulk valence band crosses the Fermi energy at the Γ-point. The measured band dispersion matches the ab initio calculations closely when shifting the Fermi energy in the calculations by -0.5 eV. The ARPES results are in good agreement with transport measurements, which show abundant p-type carriers.

4.
Proc Natl Acad Sci U S A ; 114(47): 12425-12429, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29109291

ABSTRACT

The superconducting phase in iron-based high-[Formula: see text] superconductors (FeSC), as in other unconventional superconductors such as the cuprates, neighbors a magnetically ordered one in the phase diagram. This proximity hints at the importance of electron correlation effects in these materials, and Hund's exchange interaction has been suggested to be the dominant correlation effect in FeSCs because of their multiband nature. By this reasoning, correlation should be strongest for materials closest to a half-filled [Formula: see text] electron shell (Mn compounds, hole-doped FeSCs) and decrease for systems with both higher (electron-doped FeSCs) and lower (Cr-pnictides) [Formula: see text] counts. Here we address the strength of correlation effects in nonsuperconducting antiferromagnetic BaCr2As2 by means of angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. This combination provides us with two handles on the strength of correlation: First, a comparison of the experimental and calculated effective masses yields the correlation-induced mass renormalization. In addition, the lifetime broadening of the experimentally observed dispersions provides another measure of the correlation strength. Both approaches reveal a reduction of electron correlation in BaCr2As2 with respect to systems with a [Formula: see text] count closer to five. Our results thereby support the theoretical predictions that Hund's exchange interaction is important in these materials.

5.
Nat Commun ; 8: 13942, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28067241

ABSTRACT

The rare-earth monopnictide LaBi exhibits exotic magneto-transport properties, including an extremely large and anisotropic magnetoresistance. Experimental evidence for topological surface states is still missing although band inversions have been postulated to induce a topological phase in LaBi. In this work, we have revealed the existence of surface states of LaBi through the observation of three Dirac cones: two coexist at the corners and one appears at the centre of the Brillouin zone, by employing angle-resolved photoemission spectroscopy in conjunction with ab initio calculations. The odd number of surface Dirac cones is a direct consequence of the odd number of band inversions in the bulk band structure, thereby proving that LaBi is a topological, compensated semimetal, which is equivalent to a time-reversal invariant topological insulator. Our findings provide insight into the topological surface states of LaBi's semi-metallicity and related magneto-transport properties.

6.
Nature ; 431(7004): 1 p following 39, 2004 Sep 02.
Article in English | MEDLINE | ID: mdl-15346602

ABSTRACT

One of the mysteries of modern condensed-matter physics is the nature of the pseudogap state of the superconducting cuprates. Kaminski et al. claim to have observed signatures of time-reversal symmetry breaking in the pseudogap regime in underdoped Bi2Sr2CaCu2O8+delta (Bi2212). Here we argue that the observed circular dichroism is due to the 51 superstructure replica of the electronic bands and therefore cannot be considered as evidence for spontaneous time-reversal symmetry breaking in cuprates.

7.
J Nanosci Nanotechnol ; 4(4): 433-40, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15296234

ABSTRACT

Two different single-walled carbon nanotube (SWNT) growth modes (cap growth mode and circumference growth mode) are shown to exist. General SWNT diameter windows are derivable from catalyst particle size considerations. In addition, an almost complete picture of nanotube diameter dependencies for the cap growth mode is drawn from experiment. The nanotube diameter always scales linear with temperature, but the degree of dependence varies with the catalyst element. The nanotube diameter scales logarithmically with the gas pressure and catalyst composition. Very few or exactly one atom of a catalyst additive is sufficient to induce SWNT diameter changes. The experimental data allow the conclusion that the observed nanotube diameter is based on materials properties of sp2-bonded carbon/graphene sheets, on individual properties of the catalyst elements, and on additional kinetic components from temperature and pressure changes. Indications are found for a specific and maybe decisive role of adsorbate atoms at the surface of a catalyst particle on the nanotube diameter and therefore on the process of nanotube nucleation and growth.


Subject(s)
Nanotechnology/methods , Nanotubes, Carbon/chemistry , Carbon/chemistry , Catalysis , Kinetics , Lasers , Models, Statistical , Nanotechnology/instrumentation , Nanotubes , Pressure , Spectrophotometry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...