Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Eng Data ; 69(6): 2236-2243, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38895647

ABSTRACT

During Li-ion battery operation, (electro)chemical side reactions occur within the cell that can promote or degrade performance. These complex reactions produce byproducts in the solid, liquid, and gas phases. Studying byproducts in these three phases can help optimize battery lifetimes. To relate the measured gas-phase byproducts to species dissolved in the liquid-phase, equilibrium proprieties such as the Henry's law constants are required. The present work implements a pressure decay experiment to determine the thermodynamic equilibrium concentrations between the gas and liquid phases for ethylene (C2H4) and carbon dioxide (CO2), which are two gases commonly produced in Li-ion batteries, with an electrolyte of 1.2 M LiPF6 in 3:7 wt/wt ethylene carbonate/ethyl methyl carbonate and 3 wt % fluoroethylene carbonate (15:25:57:3 wt % total composition). The experimentally measured pressure decay curve is fit to an analytical dissolution model and extrapolated to predict the final pressure at equilibrium. The relationship between the partial pressures and concentration of dissolved gas in electrolyte at equilibrium is then used to determine Henry's law constants of 2.0 × 104 kPa for C2H4 and k CO2 = 1.1 × 104 kPa for CO2. These values are compared to Henry's law constants predicted from density functional theory and show good agreement within a factor of 3.

2.
Front Chem ; 11: 1094198, 2023.
Article in English | MEDLINE | ID: mdl-36846856

ABSTRACT

Metallic contaminants pose a significant challenge to the viability of directly recycling Li-ion batteries. To date, few strategies exist to selectively remove metallic impurities from mixtures of shredded end-of-life material (black mass; BM) without concurrently damaging the structure and electrochemical performance of the target active material. We herein present tailored methods to selectively ionize two major contaminants-Al and Cu-while retaining a representative cathode (LiNi0.33Mn0.33Co0.33O2; NMC-111) intact. This BM purification process is conducted at moderate temperatures in a KOH-based solution matrix. We rationally evaluate approaches to increase both the kinetic corrosion rate and the thermodynamic solubility of Al0 and Cu0, and evaluate the impact of these treatment conditions on the structure, chemistry, and electrochemical performance of NMC. Specifically, we explore the impacts of chloride-based salts, a strong chelating agent, elevated temperature, and sonication on the rate and extent of contaminant corrosion, while concurrently evaluating the effects on NMC. The reported BM purification process is then demonstrated on samples of "simulated BM" containing a practically relevant 1 wt% concentration of Al or Cu. Increasing the kinetic energy of the purifying solution matrix through elevated temperature and sonication accelerates the corrosion of metallic Al and Cu, such that ∼100% corrosion of 75 µm Al and Cu particles is achieved within 2.5 hr. Further, we determine that effective mass transport of ionized species critically impacts the efficacy of Cu corrosion, and that saturated Cl- hinders rather than accelerates Cu corrosion by increasing solution viscosity and introducing competitive pathways for Cu surface passivation. The purification conditions do not induce bulk structural damage to NMC, and electrochemical capacity is maintained in half-cell format. Testing in full cells suggests that a limited quantity of residual surface species are present after treatment, which initially disrupt electrochemical behavior at the graphite anode but are subsequently consumed. Process demonstration on simulated BM suggests that contaminated samples-which prior to treatment show catastrophic electrochemical performance-can be recovered to pristine electrochemical capacity. The reported BM purification method offers a compelling and commercially viable solution to address contamination, particularly in the "fine" fraction of BM where contaminant sizes are on the same order of magnitude as NMC and where traditional separation approaches are unfeasible. Thus, this optimized BM purification technique offers a pathway towards viable direct recycling of BM feedstocks that would otherwise be unusable.

SELECTION OF CITATIONS
SEARCH DETAIL
...