Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
2.
NPJ Vaccines ; 9(1): 16, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245547

ABSTRACT

Dengue virus poses a serious threat to global health and there is no specific therapeutic for it. Broadly neutralizing antibodies recognizing all serotypes may be an effective treatment. High-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) and bioinformatic analysis enable in-depth understanding of the B-cell immune response. Here, we investigate the dengue antibody response with these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences. Dengue immunization elicited the following signatures on the antibody repertoire: (i) an increase of CDR3 and germline gene diversity; (ii) a change in the antibody repertoire architecture by eliciting power-law network distributions and CDR3 enrichment in polar amino acids; (iii) an increase in the expression of JNK/Fos transcription factors and ribosomal proteins. Furthermore, we demonstrate the applicability of computational methods and machine learning to AIRR-seq datasets for neutralizing antibody candidate sequence identification. Antibody expression and functional assays have validated the obtained results.

3.
Cell Rep ; 42(10): 113250, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37837618

ABSTRACT

Following viral infection, the human immune system generates CD8+ T cell responses to virus antigens that differ in specificity, abundance, and phenotype. A characterization of virus-specific T cell responses allows one to assess infection history and to understand its contribution to protective immunity. Here, we perform in-depth profiling of CD8+ T cells binding to CMV-, EBV-, influenza-, and SARS-CoV-2-derived antigens in peripheral blood samples from 114 healthy donors and 55 cancer patients using high-dimensional mass cytometry and single-cell RNA sequencing. We analyze over 500 antigen-specific T cell responses across six different HLA alleles and observed unique phenotypes of T cells specific for antigens from different virus categories. Using machine learning, we extract phenotypic signatures of antigen-specific T cells, predict virus specificity for bulk CD8+ T cells, and validate these predictions, suggesting that machine learning can be used to accurately predict antigen specificity from T cell phenotypes.


Subject(s)
CD8-Positive T-Lymphocytes , Herpesvirus 4, Human , Humans , T-Cell Antigen Receptor Specificity , Antigens, Viral , Phenotype
4.
Cells ; 12(10)2023 05 10.
Article in English | MEDLINE | ID: mdl-37408194

ABSTRACT

A single sub-anesthetic dose of ketamine evokes rapid and long-lasting beneficial effects in patients with a major depressive disorder. However, the mechanisms underlying this effect are unknown. It has been proposed that astrocyte dysregulation of extracellular K+ concentration ([K+]o) alters neuronal excitability, thus contributing to depression. We examined how ketamine affects inwardly rectifying K+ channel Kir4.1, the principal regulator of K+ buffering and neuronal excitability in the brain. Cultured rat cortical astrocytes were transfected with plasmid-encoding fluorescently tagged Kir4.1 (Kir4.1-EGFP) to monitor the mobility of Kir4.1-EGFP vesicles at rest and after ketamine treatment (2.5 or 25 µM). Short-term (30 min) ketamine treatment reduced the mobility of Kir4.1-EGFP vesicles compared with the vehicle-treated controls (p < 0.05). Astrocyte treatment (24 h) with dbcAMP (dibutyryl cyclic adenosine 5'-monophosphate, 1 mM) or [K+]o (15 mM), which increases intracellular cAMP, mimicked the ketamine-evoked reduction of mobility. Live cell immunolabelling and patch-clamp measurements in cultured mouse astrocytes revealed that short-term ketamine treatment reduced the surface density of Kir4.1 and inhibited voltage-activated currents similar to Ba2+ (300 µM), a Kir4.1 blocker. Thus, ketamine attenuates Kir4.1 vesicle mobility, likely via a cAMP-dependent mechanism, reduces Kir4.1 surface density, and inhibits voltage-activated currents similar to Ba2+, known to block Kir4.1 channels.


Subject(s)
Depressive Disorder, Major , Ketamine , Mice , Animals , Rats , Ketamine/pharmacology , Astrocytes/metabolism , Depressive Disorder, Major/metabolism , Neurons
5.
PLoS One ; 18(5): e0285878, 2023.
Article in English | MEDLINE | ID: mdl-37200264

ABSTRACT

Dengue non-structural protein (NS1) is an important diagnostic marker during the acute phase of infection. Because NS1 is partially conserved across the flaviviruses, a highly specific DENV NS-1 diagnostic test is needed to differentiate dengue infection from Zika virus (ZIKV) infection. In this study, we characterized three newly isolated antibodies against NS1 (A2, D6 and D8) from a dengue-infected patient and a previously published human anti-NS1 antibody (Den3). All four antibodies recognized multimeric forms of NS1 from different serotypes. A2 bound to NS1 from DENV-1, -2, and -3, D6 bound to NS1 from DENV-1, -2, and -4, and D8 and Den3 interacted with NS1 from all four dengue serotypes. Using a competition ELISA, we found that A2 and D6 bound to overlapping epitopes on NS1 whereas D8 recognized an epitope distinct from A2 and D6. In addition, we developed a capture ELISA that specifically detected NS1 from dengue viruses, but not ZIKV, using Den3 as the capture antibody and D8 as the detecting antibody. This assay detected NS1 from all the tested dengue virus strains and dengue-infected patients. In conclusion, we established a dengue-specific capture ELISA using human antibodies against NS1. This assay has the potential to be developed as a point-of-care diagnostic tool.


Subject(s)
Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Humans , Sensitivity and Specificity , Antibodies, Viral , Viral Nonstructural Proteins , Cross Reactions , Enzyme-Linked Immunosorbent Assay , Epitopes
6.
Antibodies (Basel) ; 12(2)2023 May 15.
Article in English | MEDLINE | ID: mdl-37218902

ABSTRACT

To combat infectious diseases, vaccines are considered the best prophylactic strategy for a wide range of the population, but even when vaccines are effective, the administration of therapeutic antibodies against viruses could provide further treatment options, particularly for vulnerable groups whose immunity against the viruses is compromised. Therapeutic antibodies against dengue are ideally engineered to abrogate binding to Fcγ receptors (FcγRs), which can induce antibody-dependent enhancement (ADE). However, the Fc effector functions of neutralizing antibodies against SARS-CoV-2 have recently been reported to improve post-exposure therapy, while they are dispensable when administered as prophylaxis. Hence, in this report, we investigated the influence of Fc engineering on anti-virus efficacy using the anti-dengue/Zika human antibody SIgN-3C and found it affected the viremia clearance efficacy against dengue in a mouse model. Furthermore, we demonstrated that complement activation through antibody binding to C1q could play a role in anti-dengue efficacy. We also generated a novel Fc variant, which displayed the ability for complement activation but showed very low FcγR binding and an undetectable level of the risk of ADE in a cell-based assay. This Fc engineering approach could make effective and safe anti-virus antibodies against dengue, Zika and other viruses.

8.
Front Immunol ; 13: 910192, 2022.
Article in English | MEDLINE | ID: mdl-35784329

ABSTRACT

Viral respiratory infections cause substantial health and economic burden. There is a pressing demand for efficacious vaccination strategies and, therefore, a need for a better understanding of the mechanisms of action of novel potential adjuvants. Here we investigated the effect of a synthetic RIG-I agonist, the dsRNA hairpin 3p10LA9, on the activation of pulmonary myeloid cells. Analysis of early innate immune responses revealed that a single intranasal 3p10LA9 dose induces a transient pulmonary interferon-stimulated gene (ISG) and pro-inflammatory cytokine/chemokine response, which leads to the maturation of three distinct dendritic cell subpopulations in the lungs. While lung resident dendritic cell decrease shortly after 3p10LA9 delivery, their numbers increase in the draining mediastinal lymph node, where they have migrated, maintaining their activated phenotype. At the same time, dsRNA hairpin-induced chemokines attract transiently infiltrating monocytes into the lungs, which causes a short temporary pulmonary inflammation. However, these monocytes are dispensable in controlling influenza infection since in CCR2 deficient mice, lacking these infiltrating cells, the virus load was similar to the wild type mice when infected with the influenza virus at a sublethal dose. In summary, our data suggest that intranasal delivery of dsRNA hairpins, used as a RIG-I targeting adjuvant, represents an attractive strategy to boost type I inteferon-mediated lung dendritic cell maturation, which supports viral reduction in the lungs during infection.


Subject(s)
Antigen Presentation , Mediastinum , Adjuvants, Immunologic , Animals , Humans , Lung , Mice , Myeloid Cells , RNA, Double-Stranded , Thorax
9.
iScience ; 24(5): 102482, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34113823

ABSTRACT

Clinically important broadly reactive B cells evolve during multiple infections, with B cells re-activated after secondary infection differing from B cells activated after a primary infection. Here we studied CD27highCD38high plasmablasts from patients with a primary or secondary dengue virus infection. Three transcriptionally and functionally distinct clusters were identified. The largest cluster 0/1 was plasma cell-related, with cells coding for serotype cross-reactive antibodies of the IgG1 isotype, consistent with memory B cell activation during an extrafollicular response. Cells in clusters 2 and 3 expressed low levels of antibody genes and high levels of genes associated with oxidative phosphorylation, EIF2 pathway, and mitochondrial dysfunction. Clusters 2 and 3 showed a transcriptional footprint of T cell help, in line with activation from naive B cells or memory B cells. Our results contribute to the understanding of the parallel B cell activation events that occur in humans after natural primary and secondary infection.

10.
Cell Rep Med ; 2(5): 100278, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34095880

ABSTRACT

Prior immunological exposure to dengue virus can be both protective and disease-enhancing during subsequent infections with different dengue virus serotypes. We provide here a systematic, longitudinal analysis of B cell, T cell, and antibody responses in the same patients. Antibody responses as well as T and B cell activation differentiate primary from secondary responses. Hospitalization is associated with lower frequencies of activated, terminally differentiated T cells and higher percentages of effector memory CD4 T cells. Patients with more severe disease tend to have higher percentages of plasmablasts. This does not translate into long-term antibody titers, since neutralizing titers after 6 months correlate with percentages of specific memory B cells, but not with acute plasmablast activation. Overall, our unbiased analysis reveals associations between cellular profiles and disease severity, opening opportunities to study immunopathology in dengue disease and the potential predictive value of these parameters.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Phenotype , Time , Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Cross Reactions/immunology , Dengue/immunology , Dengue Virus/genetics , Dengue Virus/immunology , Humans , Plasma Cells/immunology , Serogroup
11.
J Neurosci Res ; 99(4): 1084-1098, 2021 04.
Article in English | MEDLINE | ID: mdl-33491223

ABSTRACT

During cognitive efforts mediated by local neuronal networks, approximately 20% of additional energy is required; this is mediated by chemical messengers such as noradrenaline (NA). NA targets astroglial aerobic glycolysis, the hallmark of which is the end product l-lactate, a fuel for neurons. Biochemical studies have revealed that astrocytes exhibit a prominent glycogen shunt, in which a portion of d-glucose molecules entering the cytoplasm is transiently incorporated into glycogen, a buffer and source of d-glucose during increased energy demand. Here, we studied single astrocytes by measuring cytosolic L-lactate ([lac]i ) with the FRET nanosensor Laconic. We examined whether NA-induced increase in [lac]i is influenced by: (a) 2-deoxy-d-glucose (2-DG, 3 mM), a molecule that enters the cytosol and inhibits the glycolytic pathway; (b) 1,4-dideoxy-1,4-imino-d-arabinitol (DAB, 300 µM), a potent inhibitor of glycogen phosphorylase and glycogen degradation; and (c) 3-nitropropionic acid (3-NPA, 1 mM), an inhibitor of the Krebs cycle. The results of these pharmacological experiments revealed that d-glucose uptake is essential for the NA-induced increase in [lac]i , and that this exclusively arises from glycogen degradation, indicating that most, if not all, d-glucose molecules in NA-stimulated cells transit the glycogen shunt during glycolysis. Moreover, under the defined transmembrane d-glucose gradient, the glycolytic intermediates were not only used to produce l-lactate, but also to significantly support oxidative phosphorylation, as demonstrated by an elevation in [lac]i when Krebs cycle was inhibited. We conclude that l-lactate production via aerobic glycolysis is an essential energy pathway in NA-stimulated astrocytes; however, oxidative metabolism is important at rest.


Subject(s)
Astrocytes/metabolism , Glucose/metabolism , Glycogen/metabolism , Lactic Acid/biosynthesis , Norepinephrine/pharmacology , Animals , Animals, Newborn , Arabinose/pharmacology , Brain/metabolism , Citric Acid Cycle/drug effects , Deoxyglucose/pharmacology , Energy Metabolism , Fluorescence Resonance Energy Transfer , Imino Furanoses/pharmacology , Nitro Compounds/pharmacology , Oxidative Phosphorylation , Primary Cell Culture , Propionates/pharmacology , Rats , Rats, Wistar , Sugar Alcohols/pharmacology , Transfection
12.
Metabolism ; 116: 154463, 2021 03.
Article in English | MEDLINE | ID: mdl-33309713

ABSTRACT

OBJECTIVES: GDI1 gene encodes for αGDI, a protein controlling the cycling of small GTPases, reputed to orchestrate vesicle trafficking. Mutations in human GDI1 are responsible for intellectual disability (ID). In mice with ablated Gdi1, a model of ID, impaired working and associative short-term memory was recorded. This cognitive phenotype worsens if the deletion of αGDI expression is restricted to neurons. However, whether astrocytes, key homeostasis providing neuroglial cells, supporting neurons via aerobic glycolysis, contribute to this cognitive impairment is unclear. METHODS: We carried out proteomic analysis and monitored [18F]-fluoro-2-deoxy-d-glucose uptake into brain slices of Gdi1 knockout and wild type control mice. d-Glucose utilization at single astrocyte level was measured by the Förster Resonance Energy Transfer (FRET)-based measurements of cytosolic cyclic AMP, d-glucose and L-lactate, evoked by agonists selective for noradrenaline and L-lactate receptors. To test the role of astrocyte-resident processes in disease phenotype, we generated an inducible Gdi1 knockout mouse carrying the Gdi1 deletion only in adult astrocytes and conducted behavioural tests. RESULTS: Proteomic analysis revealed significant changes in astrocyte-resident glycolytic enzymes. Imaging [18F]-fluoro-2-deoxy-d-glucose revealed an increased d-glucose uptake in Gdi1 knockout tissue versus wild type control mice, consistent with the facilitated d-glucose uptake determined by FRET measurements. In mice with Gdi1 deletion restricted to astrocytes, a selective and significant impairment in working memory was recorded, which was rescued by inhibiting glycolysis by 2-deoxy-d-glucose injection. CONCLUSIONS: These results reveal a new astrocyte-based mechanism in neurodevelopmental disorders and open a novel therapeutic opportunity of targeting aerobic glycolysis, advocating a change in clinical practice.


Subject(s)
Deoxyglucose/pharmacology , Glycolysis/drug effects , Guanine Nucleotide Dissociation Inhibitors/genetics , Intellectual Disability/genetics , Memory Disorders/prevention & control , Animals , Brain/drug effects , Brain/metabolism , Cells, Cultured , Deoxyglucose/therapeutic use , Down-Regulation/drug effects , Glucose/metabolism , Guanine Nucleotide Dissociation Inhibitors/deficiency , Intellectual Disability/drug therapy , Intellectual Disability/metabolism , Intellectual Disability/pathology , Male , Maze Learning/drug effects , Memory/drug effects , Memory Disorders/genetics , Mice , Mice, Knockout
13.
Sci Rep ; 10(1): 18196, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097792

ABSTRACT

Current methods for dengue virus (DENV) genome amplification, amplify parts of the genome in at least 5 overlapping segments and then combine the output to characterize a full genome. This process is laborious, costly and requires at least 10 primers per serotype, thus increasing the likelihood of PCR bias. We introduce an assay to amplify near full-length dengue virus genomes as intact molecules, sequence these amplicons with third generation "nanopore" technology without fragmenting and use the sequence data to differentiate within-host viral variants with a bioinformatics tool (Nano-Q). The new assay successfully generated near full-length amplicons from DENV serotypes 1, 2 and 3 samples which were sequenced with nanopore technology. Consensus DENV sequences generated by nanopore sequencing had over 99.5% pairwise sequence similarity to Illumina generated counterparts provided the coverage was > 100 with both platforms. Maximum likelihood phylogenetic trees generated from nanopore consensus sequences were able to reproduce the exact trees made from Illumina sequencing with a conservative 99% bootstrapping threshold (after 1000 replicates and 10% burn-in). Pairwise genetic distances of within host variants identified from the Nano-Q tool were less than that of between host variants, thus enabling the phylogenetic segregation of variants from the same host.


Subject(s)
Dengue Virus/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing/methods , Humans , Likelihood Functions , Phylogeny
14.
Science ; 370(6519): 950-957, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32972994

ABSTRACT

Efficient therapeutic options are needed to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has caused more than 922,000 fatalities as of 13 September 2020. We report the isolation and characterization of two ultrapotent SARS-CoV-2 human neutralizing antibodies (S2E12 and S2M11) that protect hamsters against SARS-CoV-2 challenge. Cryo-electron microscopy structures show that S2E12 and S2M11 competitively block angiotensin-converting enzyme 2 (ACE2) attachment and that S2M11 also locks the spike in a closed conformation by recognition of a quaternary epitope spanning two adjacent receptor-binding domains. Antibody cocktails that include S2M11, S2E12, or the previously identified S309 antibody broadly neutralize a panel of circulating SARS-CoV-2 isolates and activate effector functions. Our results pave the way to implement antibody cocktails for prophylaxis or therapy, circumventing or limiting the emergence of viral escape mutants.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Peptidyl-Dipeptidase A/immunology , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Amino Acid Motifs/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/administration & dosage , Antibodies, Viral/isolation & purification , CHO Cells , COVID-19 , Coronavirus Infections/therapy , Cricetinae , Cricetulus , Cryoelectron Microscopy , HEK293 Cells , Humans , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/immunology , Microscopy, Electron , Pneumonia, Viral/therapy , Protein Domains/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
15.
Cell ; 183(4): 1024-1042.e21, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32991844

ABSTRACT

Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.


Subject(s)
Antibodies, Neutralizing/immunology , Epitope Mapping/methods , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigen-Antibody Reactions , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , Binding Sites , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Epitopes/chemistry , Epitopes/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Kinetics , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Protein Binding , Protein Domains/immunology , Protein Structure, Quaternary , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
16.
Nature ; 584(7821): 353-363, 2020 08.
Article in English | MEDLINE | ID: mdl-32659783

ABSTRACT

Antibody-dependent enhancement (ADE) of disease is a general concern for the development of vaccines and antibody therapies because the mechanisms that underlie antibody protection against any virus have a theoretical potential to amplify the infection or trigger harmful immunopathology. This possibility requires careful consideration at this critical point in the pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we review observations relevant to the risks of ADE of disease, and their potential implications for SARS-CoV-2 infection. At present, there are no known clinical findings, immunological assays or biomarkers that can differentiate any severe viral infection from immune-enhanced disease, whether by measuring antibodies, T cells or intrinsic host responses. In vitro systems and animal models do not predict the risk of ADE of disease, in part because protective and potentially detrimental antibody-mediated mechanisms are the same and designing animal models depends on understanding how antiviral host responses may become harmful in humans. The implications of our lack of knowledge are twofold. First, comprehensive studies are urgently needed to define clinical correlates of protective immunity against SARS-CoV-2. Second, because ADE of disease cannot be reliably predicted after either vaccination or treatment with antibodies-regardless of what virus is the causative agent-it will be essential to depend on careful analysis of safety in humans as immune interventions for COVID-19 move forward.


Subject(s)
Antibodies, Viral/adverse effects , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Dengue Virus/immunology , Disease Models, Animal , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Macaca mulatta , Mice , Middle East Respiratory Syndrome Coronavirus/immunology , Orthomyxoviridae/immunology , Pandemics , Rats , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Viral Vaccines/adverse effects , Viral Vaccines/immunology
17.
bioRxiv ; 2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32511354

ABSTRACT

SARS-CoV-2 is a newly emerged coronavirus responsible for the current COVID-19 pandemic that has resulted in more than one million infections and 73,000 deaths 1,2 . Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe multiple monoclonal antibodies targeting SARS-CoV-2 S identified from memory B cells of a SARS survivor infected in 2003. One antibody, named S309, potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2 by engaging the S receptor-binding domain. Using cryo-electron microscopy and binding assays, we show that S309 recognizes a glycan-containing epitope that is conserved within the sarbecovirus subgenus, without competing with receptor attachment. Antibody cocktails including S309 along with other antibodies identified here further enhanced SARS-CoV-2 neutralization and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309 and S309-containing antibody cocktails for prophylaxis in individuals at high risk of exposure or as a post-exposure therapy to limit or treat severe disease.

18.
EBioMedicine ; 57: 102838, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32574959

ABSTRACT

BACKGROUND: Many flaviviruses are significant human pathogens that cause global public health threats. Developing research tools for studying and diagnosing these pathogens is a top priority. Reporter flaviviruses are useful tools for studying viral pathogenesis, diagnosing disease, and screening antiviral compounds. However, the stability of reporter flaviviruses has been challenged by viral RNA recombination, leading to deletion of the engineered reporter gene during viral replication. The instability of reporter viruses has limited their application to research and countermeasure development. Thus, new approaches to overcome the instability of reporter flaviviruses are critically needed to advance the flavivirus field. METHODS: To create a stable flavivirus bearing a reporter gene, we engineered mutations in the viral capsid gene that are rendered virus-lethal upon recombination. Thus, only non-recombined reporter virus propagates. We tested this strategy using Zika virus (ZIKV) bearing a nano-luciferase (NanoLuc) gene and passaged both virus with capsid mutations and virus without mutations. FINDINGS: The recombination-dependent lethal mutations succeeded in stabilizing the NanoLuc ZIKV through ten passages, while WT reporter virus showed instability as early as five passages. The stability of NanoLuc ZIKV was supported by RT-PCR, sequencing, focus forming assay, and luciferase assay. The success of this method was reconfirmed by also establishing a stable NanoLuc Yellow Fever 17D virus, indicating that the recombination-dependent lethal approach can be applied to other flaviviruses. To demonstrate the utility of the stable reporter viruses, we showed that NanoLuc ZIKV and YFV17D could be used to measure neutralizing antibody titers with a turnaround time as short as four hours. Importantly, the neutralizing antibody titers derived from the reporter virus assay were equivalent to those derived from the conventional plaque assay, indicating the new assay maintains the gold standard of serology testing. Furthermore, using a known inhibitor, we showed that the reporter viruses could be reliably used for antiviral evaluation. INTERPRETATION: The study has developed a recombination-dependent lethal approach to produce stable reporter flaviviruses that may be used for rapid serodiagnosis, trans-gene delivery, vaccine evaluation, and antiviral discovery. FUNDING: National Institute of Health, Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation; John S. Dunn Foundation; Amon G. Carter Foundation; Gillson Longenbaugh Foundation; Summerfield G. Roberts Foundation.


Subject(s)
Drug Discovery , Genes, Reporter/genetics , Serologic Tests , Virus Replication/drug effects , Zika Virus Infection/blood , Animals , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacology , Chlorocebus aethiops , Flavivirus/drug effects , Flavivirus/pathogenicity , Humans , Mutation/drug effects , RNA, Viral/genetics , Recombination, Genetic/genetics , Vero Cells , Zika Virus/genetics , Zika Virus/pathogenicity , Zika Virus Infection/drug therapy , Zika Virus Infection/genetics , Zika Virus Infection/virology
19.
Nature ; 583(7815): 290-295, 2020 07.
Article in English | MEDLINE | ID: mdl-32422645

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged coronavirus that is responsible for the current pandemic of coronavirus disease 2019 (COVID-19), which has resulted in more than 3.7 million infections and 260,000 deaths as of 6 May 20201,2. Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe several monoclonal antibodies that target the S glycoprotein of SARS-CoV-2, which we identified from memory B cells of an individual who was infected with severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003. One antibody (named S309) potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2, by engaging the receptor-binding domain of the S glycoprotein. Using cryo-electron microscopy and binding assays, we show that S309 recognizes an epitope containing a glycan that is conserved within the Sarbecovirus subgenus, without competing with receptor attachment. Antibody cocktails that include S309 in combination with other antibodies that we identified further enhanced SARS-CoV-2 neutralization, and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309 and antibody cocktails containing S309 for prophylaxis in individuals at a high risk of exposure or as a post-exposure therapy to limit or treat severe disease.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Betacoronavirus/immunology , Cross Reactions/immunology , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/pharmacology , Antibody-Dependent Cell Cytotoxicity/drug effects , Antibody-Dependent Cell Cytotoxicity/immunology , B-Lymphocytes/immunology , Betacoronavirus/chemistry , Betacoronavirus/drug effects , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Coronavirus Infections/virology , Cross Reactions/drug effects , Cryoelectron Microscopy , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , HEK293 Cells , Humans , Immune Evasion/immunology , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/pharmacology , Immunologic Memory/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Models, Molecular , Neutralization Tests , Pandemics/prevention & control , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/drug effects , SARS-CoV-2 , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
20.
Cell Rep ; 31(4): 107584, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32348755

ABSTRACT

Human antibody SIgN-3C neutralizes dengue virus (DENV) and Zika virus (ZIKV) differently. DENV:SIgN-3C Fab and ZIKV:SIgN-3C Fab cryoelectron microscopy (cryo-EM) complex structures show Fabs crosslink E protein dimers at extracellular pH 8.0 condition and also when further incubated at acidic endosomal conditions (pH 8.0-6.5). We observe Fab binding to DENV (pH 8.0-5.0) prevents virus fusion, and the number of bound Fabs increase (from 120 to 180). For ZIKV, although there are already 180 copies of Fab at pH 8.0, virus structural changes at pH 5.0 are not inhibited. The immunoglobulin G (IgG):DENV structure at pH 8.0 shows both Fab arms bind to epitopes around the 2-fold vertex. On ZIKV, an additional Fab around the 5-fold vertex at pH 8.0 suggests one IgG arm would engage with an epitope, although the other may bind to other viruses, causing aggregation. For DENV2 at pH 5.0, a similar scenario would occur, suggesting DENV2:IgG complex would aggregate in the endosome. Hence, a single antibody employs different neutralization mechanisms against different flaviviruses.


Subject(s)
Flavivirus/pathogenicity , Neutralization Tests/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...