Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chem Rev ; 123(6): 2832-2901, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36853077

ABSTRACT

Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.


Subject(s)
High-Throughput Screening Assays , Protein Engineering , High-Throughput Screening Assays/methods , Protein Engineering/methods
2.
ACS Catal ; 12(19): 11761-11766, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36249873

ABSTRACT

The typically low thermodynamic and kinetic stability of enzymes is a bottleneck for their application in industrial synthesis. Baeyer-Villiger monooxygenases, which oxidize ketones to lactones using aerial oxygen, among other activities, suffer particularly from these instabilities. Previous efforts in protein engineering have increased thermodynamic stability but at the price of decreased activity. Here, we solved this trade-off by introducing mutations in a cyclohexanone monooxygenase from Acinetobacter sp., guided by a combination of rational and structure-guided consensus approaches. We developed variants with improved activity (1.5- to 2.5-fold) and increased thermodynamic (+5 °C T m) and kinetic stability (8-fold). Our analysis revealed a crucial position in the cofactor binding domain, responsible for an 11-fold increase in affinity to the flavin cofactor, and explained using MD simulations. This gain in affinity was compatible with other mutations. While our study focused on a particular model enzyme, previous studies indicate that these findings are plausibly applicable to other BVMOs, and possibly to other flavin-dependent monooxygenases. These new design principles can inform the development of industrially robust, flavin-dependent biocatalysts for various oxidations.

3.
ACS Cent Sci ; 7(10): 1728-1735, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34729416

ABSTRACT

The rapidly increasing use of digital technologies requires the rethinking of methods to store data. This work shows that digital data can be stored in mixtures of fluorescent dye molecules, which are deposited on a surface by inkjet printing, where an amide bond tethers the dye molecules to the surface. A microscope equipped with a multichannel fluorescence detector distinguishes individual dyes in the mixture. The presence or absence of these molecules in the mixture encodes binary information (i.e., "0" or "1"). The use of mixtures of molecules, instead of sequence-defined macromolecules, minimizes the time and difficulty of synthesis and eliminates the requirement of sequencing. We have written, stored, and read a total of approximately 400 kilobits (both text and images) with greater than 99% recovery of information, written at an average rate of 128 bits/s (16 bytes/s) and read at a rate of 469 bits/s (58.6 bytes/s).

4.
Chem Sci ; 11(47): 12671-12676, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-34094461

ABSTRACT

We report on the unexpected finding that click modification of iduronyl azides results in a conformational flip of the pyranose ring, which led to the development of a new strategy for the design of superior enzyme substrates for the diagnostic assaying of iduronate-2-sulfatase (I2S), a lysosomal enzyme related to Hunter syndrome. Synthetic substrates are essential in testing newborns for metabolic disorders to enable early initiation of therapy. Our click-flipped iduronyl triazole showed a remarkably better performance with I2S than commonly used O-iduronates. We found that both O- and triazole-linked substrates are accepted by the enzyme, irrespective of their different conformations, but only the O-linked product inhibits the activity of I2S. Thus, in the long reaction times required for clinical assays, the triazole substrate substantially outperforms the O-iduronate. Applying our click-flipped substrate to assay I2S in dried blood spots sampled from affected patients and random newborns significantly increased the confidence in discriminating between these groups, clearly indicating the potential of the click-flip strategy to control the biomolecular function of carbohydrates.

5.
Angew Chem Int Ed Engl ; 59(2): 874-881, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31714663

ABSTRACT

Magneto-Archimedes levitation (MagLev) enables the separation of powdered mixtures of illicit drugs (cocaine, methamphetamine, heroin, fentanyl, and its analogues), adulterants, and diluents based on density, and allows the presumptive identification of individual components. Small samples (mass <50 mg), with low concentrations of illicit drugs, present a particular challenge to analysis for forensic chemists. The MagLev device, a cuvette containing a solution of paramagnetic gadolinium(III) chelate in a non-polar solvent, placed between two like-poles-facing NdFeB magnets, allowed separation of seven relevant compounds simultaneously. In particular, initial separation with MagLev, followed by characterization by FTIR-ATR, enabled identification of fentanyl in a sample of fentanyl-laced heroin (1.3 wt % fentanyl, 2.6 wt % heroin, and 96.1 wt % lactose). MagLev allows identification of unknown powders in mixtures and enables confirmatory identification based on structure-specific techniques.


Subject(s)
Illicit Drugs/adverse effects , Magnetic Phenomena , Powders/chemistry
6.
ACS Cent Sci ; 5(5): 911-916, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31139727

ABSTRACT

Although information is ubiquitous, and its technology arguably among the highest that humankind has produced, its very ubiquity has posed new types of problems. Three that involve storage of information (rather than computation) include its usage of energy, the robustness of stored information over long times, and its ability to resist corruption through tampering. The difficulty in solving these problems using present methods has stimulated interest in the possibilities available through fundamentally different strategies, including storage of information in molecules. Here we show that storage of information in mixtures of readily available, stable, low-molecular-weight molecules offers new approaches to this problem. This procedure uses a common, small set of molecules (here, 32 oligopeptides) to write binary information. It minimizes the time and difficulty of synthesis of new molecules. It also circumvents the challenges of encoding and reading messages in linear macromolecules. We have encoded, written, stored, and read a total of approximately 400 kilobits (both text and images), coded as mixtures of molecules, with greater than 99% recovery of information, written at an average rate of 8 bits/s, and read at a rate of 20 bits/s. This demonstration indicates that organic and analytical chemistry offer many new strategies and capabilities to problems in long-term, zero-energy, robust information storage.

7.
Annu Rev Biophys ; 47: 223-250, 2018 05 20.
Article in English | MEDLINE | ID: mdl-29505727

ABSTRACT

Biomolecular recognition can be stubborn; changes in the structures of associating molecules, or the environments in which they associate, often yield compensating changes in enthalpies and entropies of binding and no net change in affinities. This phenomenon-termed enthalpy/entropy (H/S) compensation-hinders efforts in biomolecular design, and its incidence-often a surprise to experimentalists-makes interactions between biomolecules difficult to predict. Although characterizing H/S compensation requires experimental care, it is unquestionably a real phenomenon that has, from an engineering perspective, useful physical origins. Studying H/S compensation can help illuminate the still-murky roles of water and dynamics in biomolecular recognition and self-assembly. This review summarizes known sources of H/ S compensation (real and perceived) and lays out a conceptual framework for understanding and dissecting-and, perhaps, avoiding or exploiting-this phenomenon in biophysical systems.


Subject(s)
Entropy , Protein Engineering/methods , Thermodynamics , Humans , Molecular Dynamics Simulation
8.
ACS Chem Biol ; 13(5): 1291-1298, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29584955

ABSTRACT

Two biological activities of butyrate in the colon (suppression of proliferation of colonic epithelial stem cells and inflammation) correlate with inhibition of the activity of histone deacetylases. Cellular and biochemical studies of molecules similar in structure to butyrate, but different in molecular details (functional groups, chain-length, deuteration, oxidation level, fluorination, or degree of unsaturation), demonstrated that these activities were sensitive to molecular structure, and were compatible with the hypothesis that butyrate acts by binding to the Zn2+ in the catalytic site of histone deacetylases. Structure-activity relationships drawn from a set of 36 compounds offer a starting point for the design of new compounds targeting the inhibition of histone deacetylases. The observation that butyrate was more potent than other short-chain fatty acids is compatible with the hypothesis that crypts evolved (at least in part), to separate stem cells at the base of crypts from butyrate produced by commensal bacteria.


Subject(s)
Butyrates/metabolism , Colon/metabolism , Cell Proliferation/drug effects , Enzyme-Linked Immunosorbent Assay , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Inflammation/prevention & control , Interleukin-6/metabolism , Intestinal Mucosa/metabolism , Macrophages/metabolism , Oxidation-Reduction
9.
Front Microbiol ; 8: 2201, 2017.
Article in English | MEDLINE | ID: mdl-29180987

ABSTRACT

This paper describes the measurement and analysis of in vivo activity and stability of cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 (CHMO), a model Baeyer-Villiger monooxygenase, in the recombinant host Escherichia coli. This enzyme was often described as poorly stable in vitro, and has recently been found to deactivate rapidly in the absence of its essential cofactors and antioxidants. Its stability in vivo was scarcely studied, so far. Under conditions common for the overexpression of CHMO we investigated the ability of the host to support these properties using metabolomics. Our results showed that E. coli failed to provide the intracellular levels of cofactors required to functionally stabilize the enzyme, although the biocatalyst was produced in high concentration, and was invariably detected after protein synthesis had stopped. We thus infer that biotechnological applications of CHMO with this host relied on a residual activity of approximately 5-10%. Other microorganisms might offer a more efficient solution for recombinant production of CHMO and related enzymes.

10.
AMB Express ; 7(1): 87, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28452041

ABSTRACT

Baeyer-Villiger monooxygenases are recognized by their ability and high selectivity as oxidative biocatalysts for the generation of esters or lactones using ketones as starting materials. These enzymes represent valuable tools for biooxidative syntheses since they can catalyze reactions that otherwise involve strong oxidative reagents. In this work, we present a novel enzyme, the Type I Baeyer-Villiger monooxygenase from Leptospira biflexa. This protein is phylogenetically distant from other well-characterized BVMOs. In order to study this new enzyme, we cloned its gene, expressed it in Escherichia coli and characterized the substrate scope of the Baeyer-Villiger monooxygenase from L. biflexa as a whole-cell biocatalyst. For this purpose, we performed the screening of a collection of ketones with variable structures and sizes, namely acyclic ketones, aromatic ketones, cyclic ketones, and fused ketones. As a result, we observed that this biocatalyst readily oxidized linear- and branched- medium-chain ketones, alkyl levulinates and linear ketones with aromatic substituents with excellent regioselectivity. In addition, this enzyme catalyzed the oxidation of 2-substituted cycloketone derivatives but showed an unusual selection against substituents in positions 3 or 4 of the ring.

11.
Biotechnol Bioeng ; 114(8): 1670-1678, 2017 08.
Article in English | MEDLINE | ID: mdl-28409822

ABSTRACT

This paper describes the development of a biocatalytic process on the multi-dozen gram scale for the synthesis of a precursor to Nylon-9, a specialty polyamide. Such materials are growing in demand, but their corresponding monomers are often difficult to synthesize, giving rise to biocatalytic approaches. Here, we implemented cyclopentadecanone monooxygenase as an Escherichia coli whole-cell biocatalyst in a defined medium, together with a substrate feeding-product removal concept, and an optimized downstream processing (DSP). A previously described hazardous peracid-mediated oxidation was thus replaced with a safe and scalable protocol, using aerial oxygen as oxidant, and water as reaction solvent. The engineered process converted 42 g (0.28 mol) starting material ketone to the corresponding lactone with an isolated yield of 70% (33 g), after highly efficient DSP with 95% recovery of the converted material, translating to a volumetric yield of 8 g pure product per liter. Biotechnol. Bioeng. 2017;114: 1670-1678. © 2017 Wiley Periodicals, Inc.


Subject(s)
Bioreactors/microbiology , Culture Media/metabolism , Escherichia coli/physiology , Genetic Enhancement/methods , Mixed Function Oxygenases/metabolism , Nylons/metabolism , Catalysis , Culture Media/chemistry , Mixed Function Oxygenases/genetics , Nylons/isolation & purification , Oxidation-Reduction , Pilot Projects , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
12.
Curr Opin Chem Biol ; 37: 107-114, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28259084

ABSTRACT

Herein we highlight recent findings on the importance of water networks in proteins, and their redesign and reconfiguration as a new engineering strategy to generate enzymes with modulated binding affinity and improved catalytic versatility. Traditionally, enzyme engineering and drug design have focused on tailoring direct and favorable interactions between protein surfaces and ligands/transition states to achieve stronger binding, or an accelerated manufacturing of medicines, biofuels, fine chemicals and materials. In contrast, the opportunity to relocate water molecules in solvated binding pockets by protein design to improve overall energetics remains essentially unexplored, and fundamental understanding of the elusive processes involved is poor. Rewiring water networks in protein interiors impacts binding affinity, catalysis and the thermodynamic signature of biochemical processes through dynamic mechanisms, and thus has great potential to enhance binding specificity, accelerate catalysis and provide new reaction mechanisms and chemistry, that were not yet explored in nature.


Subject(s)
Biocatalysis , Protein Engineering/methods , Proteins/chemistry , Proteins/metabolism , Water , Entropy , Proteins/genetics , Substrate Specificity
13.
Monatsh Chem ; 148(1): 157-165, 2017.
Article in English | MEDLINE | ID: mdl-28127101

ABSTRACT

ABSTRACT: This study investigates the substrate profile of cycloalkanone monooxygenase and 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-coenzyme A monooxygenase, two recently discovered enzymes of the Baeyer-Villiger monooxygenase family, used as whole-cell biocatalysts. Biooxidations of a diverse set of ketones were performed on analytical scale: desymmetrization of substituted prochiral cyclobutanones and cyclohexanones, regiodivergent oxidation of terpenones and bicyclic ketones, as well as kinetic resolution of racemic cycloketones. We demonstrated the applicability of the title enzymes in the enantioselective synthesis of (R)-(-)-Taniguchi lactone, a building block for the preparation of various natural product analogs such as ent-quinine.

14.
Chem Commun (Camb) ; 51(14): 2874-7, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25583122

ABSTRACT

Baeyer-Villiger monooxygenases catalyze the energetically challenging oxidation of levulinates (4-oxopentanoates) to 3-hydroxypropionic acid (3-HPA) derivates under ambient conditions, replacing propellant-grade H2O2 with aerial oxygen as the oxidant. This reaction enables a new pathway to a platform for chemical 3-HPA, an important intermediate in the non-petrol based production of a variety of bulk chemicals (acrylates, malonates, 1,3-propanediol).

15.
Appl Microbiol Biotechnol ; 98(9): 4009-20, 2014 May.
Article in English | MEDLINE | ID: mdl-24247989

ABSTRACT

Baeyer-Villiger monooxygenase-catalysed reactions are attractive for industrial processes. Here we report on expanding the substrate scope of phenylacetone monooxygenase (PAMO). In order to introduce activity on alicyclic ketones in PAMO, we generated and screened a library of 1,500 mutants. Based on recently published structures of PAMO and its mutants, we selected previously uncharacterised positions as well as known hot-spots to be targeted by focused mutagenesis. We were able to mutate 11 positions in a single step by using the OmniChange method for the mutant library generation. Screening of the library using a phosphate-based activity detection method allowed identification of a quadruple mutant (P253F/G254A/R258M/L443F) active on cyclopentanone. The substrate scope of this mutant is extended to several aliphatic ketones while activity on aromatic compounds typical for PAMO was preserved. Moreover, the mutant is as thermostable as PAMO. Our results demonstrate the power of screening structure-inspired, focused mutant libraries for creating Baeyer-Villiger monooxygenases with new specificities.


Subject(s)
Ketones/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mutagenesis , Acetone/analogs & derivatives , Acetone/metabolism , Genetic Testing , Substrate Specificity
16.
Bioorg Med Chem Lett ; 21(20): 6135-8, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21900007

ABSTRACT

Baeyer-Villiger monooxygenases (BVMOs) are presented as highly selective and efficient biocatalysts for the synthesis of aroma lactones via kinetic resolution of 2-substituted cycloketones, exemplified with two δ-valerolactones, the jasmine lactones and their ε-caprolactone homologs. Analytical scale screens of our BVMO library ensued by preparative whole-cell biotransformations led to the identification of two enzymes (cyclohexanone monooxygenase from Arthrobacter BP2 and cyclododecanone monooxygenase from Rhodococcus SC1) perfectly suited for the task at hand: easily accessible racemic starting materials were bio-oxidized to almost enantiopure ketones and lactones in good yields (48-74%) and optical purities (ee 93% to >99%, E>100).


Subject(s)
Arthrobacter/enzymology , Lactones/metabolism , Mixed Function Oxygenases/metabolism , Perfume/metabolism , Rhodococcus/enzymology , Biotransformation , Lactones/chemistry , Perfume/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...