Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842277

ABSTRACT

Flexible responses to sensory stimuli based on changing rules are critical for adapting to a dynamic environment. However, it remains unclear how the brain encodes and uses rule information to guide behavior. Here, we made single-unit recordings while head-fixed mice performed a cross-modal sensory selection task where they switched between two rules: licking in response to tactile stimuli while rejecting visual stimuli, or vice versa. Along a cortical sensorimotor processing stream including the primary (S1) and secondary (S2) somatosensory areas, and the medial (MM) and anterolateral (ALM) motor areas, single-neuron activity distinguished between the two rules both prior to and in response to the tactile stimulus. We hypothesized that neural populations in these areas would show rule-dependent preparatory states, which would shape the subsequent sensory processing and behavior. This hypothesis was supported for the motor cortical areas (MM and ALM) by findings that (1) the current task rule could be decoded from pre-stimulus population activity; (2) neural subspaces containing the population activity differed between the two rules; and (3) optogenetic disruption of pre-stimulus states impaired task performance. Our findings indicate that flexible action selection in response to sensory input can occur via configuration of preparatory states in the motor cortex.


Subject(s)
Motor Cortex , Animals , Mice , Motor Cortex/physiology , Male , Somatosensory Cortex/physiology , Neurons/physiology , Female , Optogenetics , Behavior, Animal/physiology
2.
Cell Rep ; 43(4): 113991, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38573855

ABSTRACT

The brain receives constant tactile input, but only a subset guides ongoing behavior. Actions associated with tactile stimuli thus endow them with behavioral relevance. It remains unclear how the relevance of tactile stimuli affects processing in the somatosensory (S1) cortex. We developed a cross-modal selection task in which head-fixed mice switched between responding to tactile stimuli in the presence of visual distractors or to visual stimuli in the presence of tactile distractors using licking movements to the left or right side in different blocks of trials. S1 spiking encoded tactile stimuli, licking actions, and direction of licking in response to tactile but not visual stimuli. Bidirectional optogenetic manipulations showed that sensory-motor activity in S1 guided behavior when touch but not vision was relevant. Our results show that S1 activity and its impact on behavior depend on the actions associated with a tactile stimulus.


Subject(s)
Somatosensory Cortex , Animals , Mice , Somatosensory Cortex/physiology , Male , Touch/physiology , Mice, Inbred C57BL , Optogenetics , Touch Perception/physiology , Behavior, Animal , Female
3.
bioRxiv ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-37662301

ABSTRACT

Flexible responses to sensory stimuli based on changing rules are critical for adapting to a dynamic environment. However, it remains unclear how the brain encodes rule information and uses this information to guide behavioral responses to sensory stimuli. Here, we made single-unit recordings while head-fixed mice performed a cross-modal sensory selection task in which they switched between two rules in different blocks of trials: licking in response to tactile stimuli applied to a whisker while rejecting visual stimuli, or licking to visual stimuli while rejecting the tactile stimuli. Along a cortical sensorimotor processing stream including the primary (S1) and secondary (S2) somatosensory areas, and the medial (MM) and anterolateral (ALM) motor areas, the single-trial activity of individual neurons distinguished between the two rules both prior to and in response to the tactile stimulus. Variable rule-dependent responses to identical stimuli could in principle occur via appropriate configuration of pre-stimulus preparatory states of a neural population, which would shape the subsequent response. We hypothesized that neural populations in S1, S2, MM and ALM would show preparatory activity states that were set in a rule-dependent manner to cause processing of sensory information according to the current rule. This hypothesis was supported for the motor cortical areas by findings that (1) the current task rule could be decoded from pre-stimulus population activity in ALM and MM; (2) neural subspaces containing the population activity differed between the two rules; and (3) optogenetic disruption of pre-stimulus states within ALM and MM impaired task performance. Our findings indicate that flexible selection of an appropriate action in response to a sensory input can occur via configuration of preparatory states in the motor cortex.

4.
Neuron ; 110(3): 486-501.e7, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34863367

ABSTRACT

The claustrum, a subcortical nucleus forming extensive connections with the neocortex, has been implicated in sensory selection. Sensory-evoked claustrum activity is thought to modulate the neocortex's context-dependent response to sensory input. Recording from claustrum neurons while mice performed a tactile-visual sensory-selection task, we found that neurons in the anterior claustrum, including putative optotagged claustrocortical neurons projecting to the primary somatosensory cortex (S1), were rarely modulated by sensory input. Rather, they exhibited different types of direction-tuned motor responses. Furthermore, we found that claustrum neurons encoded upcoming movement during intertrial intervals and that pairs of claustrum neurons exhibiting synchronous firing were enriched for pairs preferring contralateral lick directions, suggesting that the activity of specific ensembles of similarly tuned claustrum neurons may modulate cortical activity. Chemogenetic inhibition of claustrocortical neurons decreased lick responses to inappropriate sensory stimuli. Altogether, our data indicate that the claustrum is integrated into higher-order premotor circuits recently implicated in decision-making.


Subject(s)
Claustrum , Neocortex , Animals , Basal Ganglia/physiology , Mice , Neural Pathways/physiology , Neurons/physiology
5.
Neuron ; 97(1): 1-2, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29301096

ABSTRACT

How the brain maps sensory information to adaptive behavior remains unresolved. A new study in this issue of Neuron (Le Merre et al., 2017) uncovers learning-related recruitment of higher cortical areas into the rapid sensory processing stream that links a whisker stimulus to rewarded action.


Subject(s)
Goals , Learning , Animals , Hippocampus , Prefrontal Cortex , Reward
6.
Biol Psychiatry ; 77(3): 212-222, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25173629

ABSTRACT

BACKGROUND: The nucleus accumbens is a critical mediator of depression-related outcomes to social defeat stress. Previous studies demonstrate distinct neuroplasticity adaptations in the two medium spiny neuron (MSN) subtypes, those enriched in dopamine receptor D1 versus dopamine receptor D2, in reward and reinforcement leading to opposing roles for these MSNs in these behaviors. However, the distinct roles of nucleus accumbens MSN subtypes, in depression, remain poorly understood. METHODS: Using whole-cell patch clamp electrophysiology, we examined excitatory input to MSN subtypes and intrinsic excitability measures in D1-green fluorescent protein and D2-green fluorescent protein bacterial artificial chromosome transgenic mice that underwent chronic social defeat stress (CSDS). Optogenetic and pharmacogenetic approaches were used to bidirectionally alter firing of D1-MSNs or D2-MSNs after CSDS or before a subthreshold social defeat stress in D1-Cre or D2-Cre bacterial artificial chromosome transgenic mice. RESULTS: We demonstrate that the frequency of excitatory synaptic input is decreased in D1-MSNs and increased in D2-MSNs in mice displaying depression-like behaviors after CSDS. Enhancing activity in D1-MSNs results in resilient behavioral outcomes, while inhibition of these MSNs induces depression-like outcomes after CSDS. Bidirectional modulation of D2-MSNs does not alter behavioral responses to CSDS; however, repeated activation of D2-MSNs in stress naïve mice induces social avoidance following subthreshold social defeat stress. CONCLUSIONS: Our studies uncover novel functions of MSN subtypes in depression-like outcomes. Notably, bidirectional alteration of D1-MSN activity promotes opposite behavioral outcomes to chronic social stress. Therefore, targeting D1-MSN activity may provide novel treatment strategies for depression or other affective disorders.


Subject(s)
Depressive Disorder/physiopathology , GABAergic Neurons/physiology , Nucleus Accumbens/physiopathology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Stress, Psychological/physiopathology , Action Potentials/physiology , Anhedonia/physiology , Animals , Dominance-Subordination , GABAergic Neurons/classification , Male , Mice, Inbred C57BL , Mice, Transgenic , Optogenetics , Patch-Clamp Techniques , Receptors, Dopamine D1/genetics , Receptors, Dopamine D2/genetics , Resilience, Psychological , Social Behavior , Tissue Culture Techniques
7.
J Neurosci ; 33(47): 18381-95, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24259563

ABSTRACT

The transcription factor, ΔFosB, is robustly and persistently induced in striatum by several chronic stimuli, such as drugs of abuse, antipsychotic drugs, natural rewards, and stress. However, very few studies have examined the degree of ΔFosB induction in the two striatal medium spiny neuron (MSN) subtypes. We make use of fluorescent reporter BAC transgenic mice to evaluate induction of ΔFosB in dopamine receptor 1 (D1) enriched and dopamine receptor 2 (D2) enriched MSNs in ventral striatum, nucleus accumbens (NAc) shell and core, and in dorsal striatum (dStr) after chronic exposure to several drugs of abuse including cocaine, ethanol, Δ(9)-tetrahydrocannabinol, and opiates; the antipsychotic drug, haloperidol; juvenile enrichment; sucrose drinking; calorie restriction; the serotonin selective reuptake inhibitor antidepressant, fluoxetine; and social defeat stress. Our findings demonstrate that chronic exposure to many stimuli induces ΔFosB in an MSN-subtype selective pattern across all three striatal regions. To explore the circuit-mediated induction of ΔFosB in striatum, we use optogenetics to enhance activity in limbic brain regions that send synaptic inputs to NAc; these regions include the ventral tegmental area and several glutamatergic afferent regions: medial prefrontal cortex, amygdala, and ventral hippocampus. These optogenetic conditions lead to highly distinct patterns of ΔFosB induction in MSN subtypes in NAc core and shell. Together, these findings establish selective patterns of ΔFosB induction in striatal MSN subtypes in response to chronic stimuli and provide novel insight into the circuit-level mechanisms of ΔFosB induction in striatum.


Subject(s)
Corpus Striatum/cytology , Dopamine Agents/pharmacology , Emotions/drug effects , Optogenetics , Proto-Oncogene Proteins c-fos/metabolism , Animals , Antidepressive Agents/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Environment , Gene Expression Regulation/drug effects , Green Fluorescent Proteins/genetics , In Vitro Techniques , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/classification , Neurons/drug effects , Phosphopyruvate Hydratase/metabolism , Receptors, Dopamine D1/genetics , Receptors, Dopamine D2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...