Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5079, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871703

ABSTRACT

Hybrid glasses derived from meltable metal-organic frameworks (MOFs) promise to combine the intriguing properties of MOFs with the universal processing ability of glasses. However, the shaping of hybrid glasses in their liquid state - in analogy to conventional glass processing - has been elusive thus far. Here, we present optical-quality glasses derived from the zeolitic imidazole framework ZIF-62 in the form of cm-scale objects. These allow for in-depth studies of optical transparency and refraction across the ultraviolet to near-infrared spectral range. Fundamental viscosity data are reported using a ball penetration technique, and subsequently employed to demonstrate the fabrication of micro-optical devices by thermal imprinting. Using 3D-printed fused silica templates, we show that concave as well as convex lens structures can be obtained at high precision by remelting the glass without trading-off on material quality. This enables multifunctional micro-optical devices combining the gas uptake and permeation ability of MOFs with the optical functionality of glass. As an example, we demonstrate the reversible change of optical refraction upon the incorporation of volatile guest molecules.

2.
Adv Mater ; 35(40): e2305006, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572365

ABSTRACT

The energies of the frontier molecular orbitals determine the optoelectronic properties in organic films, which are crucial for their application, and strongly depend on the morphology and supramolecular structure. The impact of the latter two properties on the electronic energy levels relies primarily on nearest-neighbor interactions, which are difficult to study due to their nanoscale nature and heterogeneity. Here, an automated method is presented for fabricating thin films with a tailored ratio of surface to bulk sites and a controlled extension of domain edges, both of which are used to control nearest-neighbor interactions. This method uses a Langmuir-Schaefer-type rolling transfer of Langmuir layers (rtLL) to minimize flow during the deposition of rigid Langmuir layers composed of π-conjugated molecules. Using UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy, it is shown that the rtLL method advances the deposition of multi-Langmuir layers and enables the production of films with defined morphology. The variation in nearest-neighbor interactions is thus achieved and the resulting systematically tuned lowest unoccupied molecular orbital (LUMO) energies (determined via square-wave voltammetry) enable the establishment of a model that functionally relates the LUMO energies to a morphological descriptor, allowing for the prediction of the range of accessible LUMO energies.

SELECTION OF CITATIONS
SEARCH DETAIL
...