Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 14949, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31628356

ABSTRACT

Grapevine (Vitis spp.) buds must survive winter temperatures in order to resume growth when suitable conditions return in spring. They do so by developing cold hardiness through deep supercooling, but the mechanistic process of supercooling in buds remains largely unknown. Here we use synchrotron X-ray phase contrast imaging to study cold hardiness-related characteristics of V. amurensis, V. riparia, and V. vinifera buds: time-resolved 2D imaging was used to visualize freezing; and microtomography was used to evaluate morphological changes during deacclimation. Bud cold hardiness was determined (low temperature exotherms; LTEs) using needle thermocouples during 2D imaging as buds were cooled with a N2 gas cryostream. Resolution in 2D imaging did not allow for ice crystal identification, but freezing was assessed by movement of tissues coinciding with LTE values. Freezing was observed to propagate from the center of the bud toward the outer bud scales. The freezing events observed lasted several minutes. Additionally, loss of supercooling ability appears to be correlated with increases in bud tissue volume during the process of deacclimation, but major increases in volume occur after most of the supercooling ability is lost, suggesting growth resumption processes are limited by deacclimation state.


Subject(s)
Acclimatization , Cold Temperature , Stress, Physiological , Vitis/physiology , Freezing , Microscopy, Phase-Contrast , Nitrogen , Radiography , Species Specificity , X-Ray Microtomography , X-Rays
2.
Phys Chem Chem Phys ; 20(46): 28990-29000, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30238093

ABSTRACT

Cation site occupation is an important determinant of materials properties, especially in a complex system with multiple cations such as in ternary spinels. Many methods for extracting the cation site information have been explored in the past, including analysis of spectra obtained through K-edge X-ray absorption spectroscopy (XAS). In this work, we measure the effectiveness of X-ray emission spectroscopy (XES) for determining the cation site occupation. As a test system we use spinel phase CoxMn3-xO4 nanoparticles contaminated with CoO phases because Co and Mn can occupy all cation sites and the impurity simulates typical products of oxide syntheses. We take advantage of the spin and oxidation state sensitive Kß1,3 peak obtained using XES and demonstrate that XES is a powerful and reliable technique for determining site occupation in ternary spinel systems. Comparison between the extended X-ray absorption fine structure (EXAFS) and XES techniques reveals that XES provides not only the site occupation information as EXAFS, but also additional information on the oxidation states of the cations at each site. We show that the error for EXAFS can be as high as 35% which makes the results obtained ambiguous for certain stoichiometries, whereas for XES, the error determined is consistently smaller than 10%. Thus, we conclude that XES is a superior and a far more accurate method than XAS in extracting cation site occupation in spinel crystal structures.

3.
Angew Chem Int Ed Engl ; 57(39): 12754-12758, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30075052

ABSTRACT

Proton transfer reactions are of central importance to a wide variety of biochemical processes, though determining proton location and monitoring proton transfers in biological systems is often extremely challenging. Herein, we use two-color valence-to-core X-ray emission spectroscopy (VtC XES) to identify protonation events across three oxidation states of the O2 -activating, radical-initiating manganese-iron heterodinuclear cofactor in a class I-c ribonucleotide reductase. This is the first application of VtC XES to an enzyme intermediate and the first simultaneous measurement of two-color VtC spectra. In contrast to more conventional methods of assessing protonation state, VtC XES is a more direct probe applicable to a wide range of metalloenzyme systems. These data, coupled to insight provided by DFT calculations, allow the inorganic cores of the MnIV FeIV and MnIV FeIII states of the enzyme to be assigned as MnIV (µ-O)2 FeIV and MnIV (µ-O)(µ-OH)FeIII , respectively.


Subject(s)
Bacterial Proteins/metabolism , Ribonucleotide Reductases/metabolism , Spectrometry, X-Ray Emission , Bacterial Proteins/chemistry , Chlamydia trachomatis/enzymology , Density Functional Theory , Ferric Compounds/chemistry , Ions/chemistry , Iron/chemistry , Manganese/chemistry , Protons , Ribonucleotide Reductases/chemistry
4.
Nat Commun ; 8(1): 852, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29021552

ABSTRACT

In mixed-valent Kondo lattice systems, such as YbAl3, interactions between localized and delocalized electrons can lead to fluctuations between two different valence configurations with changing temperature or pressure. The impact of this change on the momentum-space electronic structure is essential for understanding their emergent properties, but has remained enigmatic. Here, by employing a combination of molecular beam epitaxy and in situ angle-resolved photoemission spectroscopy we show that valence fluctuations can lead to dramatic changes in the Fermi surface topology, even resulting in a Lifshitz transition. As the temperature is lowered, a small electron pocket in YbAl3 becomes completely unoccupied while the low-energy ytterbium (Yb) 4f states become increasingly itinerant, acquiring additional spectral weight, longer lifetimes, and well-defined dispersions. Our work presents a unified picture of how local valence fluctuations connect to momentum-space concepts such as band filling and Fermi surface topology in mixed valence systems.How the electronic structure of a mixed-valence system changes with respect to local chemical environment remains elusive. Here, Chatterjee et al. show that valence fluctuations of YbAl3 can lead to dramatic changes in the Fermi surface topology in reciprocal space.


Subject(s)
Aluminum Compounds/chemistry , Ytterbium/chemistry , Molecular Structure
5.
J Biol Inorg Chem ; 21(5-6): 793-805, 2016 09.
Article in English | MEDLINE | ID: mdl-27251139

ABSTRACT

A series of vanadium compounds was studied by K-edge X-ray absorption (XAS) and K[Formula: see text] X-ray emission spectroscopies (XES). Qualitative trends within the datasets, as well as comparisons between the XAS and XES data, illustrate the information content of both methods. The complementary nature of the chemical insight highlights the success of this dual-technique approach in characterizing both the structural and electronic properties of vanadium sites. In particular, and in contrast to XAS or extended X-ray absorption fine structure (EXAFS), we demonstrate that valence-to-core XES is capable of differentiating between ligating atoms with the same identity but different bonding character. Finally, density functional theory (DFT) and time-dependent DFT calculations enable a more detailed, quantitative interpretation of the data. We also establish correction factors for the computational protocols through calibration to experiment. These hard X-ray methods can probe vanadium ions in any oxidation or spin state, and can readily be applied to sample environments ranging from solid-phase catalysts to biological samples in frozen solution. Thus, the combined XAS and XES approach, coupled with DFT calculations, provides a robust tool for the study of vanadium atoms in bioinorganic chemistry.


Subject(s)
Vanadium Compounds/chemistry , Quantum Theory , Spectrometry, X-Ray Emission , X-Ray Absorption Spectroscopy
6.
J Am Chem Soc ; 138(6): 1922-31, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26844693

ABSTRACT

The contested electronic structure of [Cu(CF3)4](1-) is investigated with UV/visible/near IR spectroscopy, Cu K-edge X-ray absorption spectroscopy, and 1s2p resonant inelastic X-ray scattering. These data, supported by density functional theory, multiplet theory, and multireference calculations, support a ground state electronic configuration in which the lowest unoccupied orbital is of predominantly trifluoromethyl character. The consensus 3d(10) configuration features an inverted ligand field in which all five metal-localized molecular orbitals are located at lower energy relative to the trifluoromethyl-centered σ orbitals.


Subject(s)
Copper/chemistry , Spectrum Analysis/methods , Ligands
7.
Inorg Chem ; 53(19): 10378-85, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25211540

ABSTRACT

Transition-metal Kß X-ray emission spectroscopy (XES) is a developing technique that probes the occupied molecular orbitals of a metal complex. As an element-specific probe of metal centers, Kß XES is finding increasing applications in catalytic and, in particular, bioinorganic systems. For the continued development of XES as a probe of these complex systems, however, the full range of factors which contribute to XES spectral modulations must be explored. In this report, an investigation of a series of oxo-bridged iron dimers reveals that the intensity of valence-to-core features is sensitive to the Fe-O-Fe bond angle. The intensity of these features has a well-known dependence on metal-ligand bond distance, but a dependence upon bond angle has not previously been documented. Herein, we explore the angular dependence of valence-to-core XES features both experimentally and computationally. Taken together, these results show that, as the Fe-O-Fe angle decreases, the intensity of the Kß″ feature increases and that this effect is modulated by increasing amounts of Fe np mixing into the O 2s orbital at smaller bond angles. The relevance of these findings to the identification of oxygenated intermediates in bioinorganic systems is highlighted, with special emphasis given to the case of soluble methane monooxygenase.


Subject(s)
Ferrous Compounds/chemistry , Dimerization , Molecular Structure , Quantum Theory , X-Ray Absorption Spectroscopy
8.
Organometallics ; 31(6): 2275-2285, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22675236

ABSTRACT

The electronic structures of the four- and five-coordinate aryl-substituted bis(imino)pyridine iron dinitrogen complexes, ((iPr)PDI)FeN(2) and ((iPr)PDI)Fe(N(2))(2) ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N=CMe)(2)C(5)H(3)N), have been investigated by a combination of spectroscopic techniques (NMR, Mössbauer, X-ray Absorption and X-ray Emission) and DFT calculations. Homologation of the imine methyl backbone to ethyl or isopropyl groups resulted in the preparation of the new bis(imino)pyridine iron dinitrogen complexes, ((iPr)RPDI)FeN(2) ((iPr)RPDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N=CR)(2)C(5)H(3)N; R = Et, (i)Pr), that are exclusively four coordinate both in the solid state and in solution. The spectroscopic and computational data establish that the ((iPr)RPDI)FeN(2) compounds are intermediate spin ferrous derivatives (S(Fe) = 1) antiferromagnetically coupled to bis(imino)pyridine triplet diradical dianions (S(PDI) = 1). While this ground state description is identical to that previously reported for ((iPr)PDI)Fe(DMAP) (DMAP = 4-N,N-dimethylaminopyridine) and other four-coordinate iron compounds with principally σ-donating ligands, the d-orbital energetics determine the degree of coupling of the metal-chelate magnetic orbitals resulting in different NMR spectroscopic behavior. For ((iPr)RPDI)Fe(DMAP) and related compounds, this coupling is strong and results in temperature independent paramagnetism where a triplet excited state mixes with the singlet ground state via spin orbit coupling. In the ((iPr)RPDI)FeN(2) family, one of the iron SOMOs is essentially d(z2) in character resulting in poor overlap with the magnetic orbitals of the chelate, leading to thermal population of the triplet state and hence temperature dependent NMR behavior. The electronic structures of ((iPr)RPDI)FeN(2) and ((iPr)PDI)Fe(DMAP) differ from ((iPr)PDI)Fe(N(2))(2), a highly covalent molecule with a redox non-innocent chelate that is best described as a resonance hybrid between iron(0) and iron(II) canonical forms as originally proposed in 2004.

9.
Inorg Chem ; 51(6): 3770-85, 2012 Mar 19.
Article in English | MEDLINE | ID: mdl-22394054

ABSTRACT

The electronic structures of the four- and five-coordinate aryl-substituted bis(imino)pyridine iron dinitrogen complexes, ((iPr)PDI)FeN(2) and ((iPr)PDI)Fe(N(2))(2) ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N=CMe)(2)C(5)H(3)N), have been investigated by a combination of spectroscopic techniques (NMR, Mössbauer, X-ray Absorption, and X-ray Emission) and DFT calculations. Homologation of the imine methyl backbone to ethyl or isopropyl groups resulted in the preparation of the new bis(imino)pyridine iron dinitrogen complexes, ((iPr)RPDI)FeN(2) ((iPr)RPDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N=CR)(2)C(5)H(3)N; R = Et, (i)Pr), that are exclusively four coordinate both in the solid state and in solution. The spectroscopic and computational data establish that the ((iPr)RPDI)FeN(2) compounds are intermediate spin ferrous derivatives (S(Fe) = 1) antiferromagnetically coupled to bis(imino)pyridine triplet diradical dianions (S(PDI) = 1). While this ground state description is identical to that previously reported for ((iPr)PDI)Fe(DMAP) (DMAP = 4-N,N-dimethylaminopyridine) and other four-coordinate iron compounds with principally σ-donating ligands, the d-orbital energetics determine the degree of coupling of the metal-chelate magnetic orbitals resulting in different NMR spectroscopic behavior. For ((iPr)RPDI)Fe(DMAP) and related compounds, this coupling is strong and results in temperature independent paramagnetism where a triplet excited state mixes with the singlet ground state via spin orbit coupling. In the ((iPr)RPDI)FeN(2) family, one of the iron singly occupied molecular orbitals (SOMOs) is essentially d(z(2)) in character resulting in poor overlap with the magnetic orbitals of the chelate, leading to thermal population of the triplet state and hence temperature dependent NMR behavior. The electronic structures of ((iPr)RPDI)FeN(2) and ((iPr)PDI)Fe(DMAP) differ from ((iPr)PDI)Fe(N(2))(2), a highly covalent molecule with a redox noninnocent chelate that is best described as a resonance hybrid between iron(0) and iron(II) canonical forms as originally proposed in 2004.


Subject(s)
Iron/chemistry , Nitrogen/chemistry , Pyridines/chemistry , Spectroscopy, Mossbauer
10.
Inorg Chem ; 50(14): 6767-74, 2011 Jul 18.
Article in English | MEDLINE | ID: mdl-21692497

ABSTRACT

Kß X-ray emission spectroscopy (XES) is emerging as a powerful tool for the study of chemical bonding. Analyses of the Kß XES of ferrocene (Fc) and ferrocenium (Fc(+)) are presented as further demonstrations of the capabilities of the technique. Assignments of the valence to core (V2C) region of these spectra as electric dipole-allowed cyclopentadienyl (Cp) → Fe 1s transitions demonstrate that XES affords electronic structural insight into the energetics of ligand-based molecular orbitals (MOs). Combined with K-edge X-ray absorption spectroscopy (XAS), we show that XES can provide analogous information to photoemission spectroscopy (PES). Density functional theory (DFT) analyses reveal that the V2C transitions in Fc/Fc(+) derive their intensity from Fe 4p admixture (on the order of 5-10%) into the Cp-based MOs from which they originate. These 4p admixtures confer bonding character to the Cp-based a(2u) and e(1u) MOs to at least the extent of backbonding contributions to frontier MOs from higher-lying Cp π* MOs.


Subject(s)
Electrons , Ferrous Compounds/chemistry , Binding Sites , Metallocenes , Molecular Structure , Quantum Theory , Spectrometry, X-Ray Emission
11.
Methods Enzymol ; 469: 391-410, 2009.
Article in English | MEDLINE | ID: mdl-20946800

ABSTRACT

Anomalous small angle X-ray scattering (ASAXS) exploits contrast variation methods to highlight the scattering from one elemental component in a multielement sample, such as one ion species in an ion-DNA system. The ASAXS method has been applied to measure ions condensed around short nucleic acid duplexes. This chapter, which briefly describes the origin of the ASAXS signal, focuses on the experimental methods required to carry out these measurements and the interpretation of the anomalous signals.


Subject(s)
Ions/chemistry , Nucleic Acids/chemistry , Scattering, Small Angle , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...