Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Ophthalmol ; 107(5): 663-670, 2023 05.
Article in English | MEDLINE | ID: mdl-34853018

ABSTRACT

BACKGROUND/AIMS: Early detection and treatment of glaucoma can delay vision loss. In this study, we evaluate the performance of handheld chromatic pupillometry (HCP) for the objective and rapid detection of functional loss in glaucoma. METHODS: In this clinic-based, prospective study, we enrolled 149 patients (median (IQR) years: 68.5 (13.6) years) with confirmed glaucoma and 173 healthy controls (55.2 (26.7) years). Changes in pupil size in response to 9 s of exponentially increasing blue (469 nm) and red (640 nm) light-stimuli were assessed monocularly using a custom-built handheld pupillometer. Pupillometric features were extracted from individual traces and compared between groups. Features with the highest classification potential, selected using a gradient boosting machine technique, were incorporated into a generalised linear model for glaucoma classification. Receiver operating characteristic curve analyses (ROC) were used to compare the performance of HCP, optical coherence tomography (OCT) and Humphrey Visual Field (HVF). RESULTS: Pupillary light responses were altered in glaucoma compared with controls. For glaucoma classification, HCP yielded an area under the ROC curve (AUC) of 0.94 (95% CI 0.91 to 0.96), a sensitivity of 87.9% and specificity of 88.4%. The classification performance of HCP in early-moderate glaucoma (visual field mean deviation (VFMD) > -12 dB; AUC=0.91 (95% CI 0.87 to 0.95)) was similar to HVF (AUC=0.91) and reduced compared with OCT (AUC=0.97; p=0.01). For severe glaucoma (VFMD ≤ -12 dB), HCP had an excellent classification performance (AUC=0.98, 95% CI 0.97 to 1) that was similar to HVF and OCT. CONCLUSION: HCP allows for an accurate, objective and rapid detection of functional loss in glaucomatous eyes of different severities.


Subject(s)
Glaucoma , Humans , Prospective Studies , Glaucoma/diagnosis , Visual Field Tests/methods , Visual Fields , ROC Curve , Tomography, Optical Coherence/methods
2.
Front Immunol ; 13: 962939, 2022.
Article in English | MEDLINE | ID: mdl-36225920

ABSTRACT

Elicitation of broadly neutralizing antibodies (bnAbs) is a goal of vaccine design as a strategy for targeting highly divergent strains of HIV-1. Current HIV-1 vaccine design efforts seek to elicit bnAbs by first eliciting their precursors through prime-boost regimens. This requires an understanding of the co-evolution between viruses and antibodies. Towards this goal, we have analyzed two cooperating antibodies, DH475 and DH272, which exerted pressure on the HIV population in an infected donor, called CH848, to evolve in such a way that it became sensitive to the V3-glycan supersite DH270 bnAb lineage. We obtained a 2.90Å crystal structure of DH475 in complex with the Man9 glycan and a negative stain EM model of DH272 in complex with the HIV-1 spike trimer, Env. Coupled with additional modeling studies and biochemical data, our studies reveal that DH475 contacts a V3- and V4-glycan dependent epitope accessible on an open or shed Env and that DH272 makes critical contacts with the V1V2 and V3 loops on HIV-1 Env. Using these data, we suggest a prime-boost regimen that may facilitate the initiation of DH270-like bnAb precursors.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Vaccines , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Epitopes , HIV Antibodies , Humans , Polysaccharides
3.
Clin Exp Ophthalmol ; 50(7): 745-756, 2022 09.
Article in English | MEDLINE | ID: mdl-35616273

ABSTRACT

BACKGROUND: To evaluate the ability of handheld chromatic pupillometry to reveal and localise retinal neural dysfunction in diabetic patients with and without diabetic retinopathy (DR). METHODS: This cross-sectional study included 82 diabetics (DM) and 93 controls (60.4 ± 8.4 years, 44.1% males). DM patients included those without (n = 25, 64.7 ± 6.3 years, 44.0% males) and with DR (n = 57, 60.3 ± 8.5 years, 64.9% males). Changes in horizontal pupil radius in response to blue (469 nm) and red (640 nm) light stimuli were assessed monocularly, in clinics, using a custom-built handheld pupillometer. Pupillometric parameters (phasic constriction amplitudes [predominantly from the outer retina], maximal constriction amplitudes [from the inner and outer retina] and post-illumination pupillary responses [PIPRs; predominantly from the inner retina]) were extracted from baseline-adjusted pupillary light response traces and compared between controls, DM without DR, and DR. Net PIPR was defined as the difference between blue and red PIPRs. RESULTS: Phasic constriction amplitudes to blue and red lights were decreased in DR compared to controls (p < 0.001; p < 0.001). Maximal constriction amplitudes to blue and red lights were decreased in DR compared to DM without DR (p < 0.001; p = 0.02), and in DM without DR compared to controls (p < 0.001; p = 0.005). Net PIPR was decreased in both DR and DM without DR compared to controls (p = 0.02; p = 0.03), suggesting a wavelength-dependent (and hence retinal) pupillometric dysfunction in diabetic patients with or without DR. CONCLUSIONS: Handheld chromatic pupillometry can reveal retinal neural dysfunction in diabetes, even without DR. Patients with DM but no DR displayed primarily inner retinal dysfunction, while patients with DR showed both inner and outer retinal dysfunction.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Cross-Sectional Studies , Diabetic Retinopathy/complications , Diabetic Retinopathy/diagnosis , Female , Humans , Male , Photic Stimulation , Pupil/physiology , Reflex, Pupillary/physiology , Retinal Ganglion Cells/physiology , Rod Opsins/physiology
5.
Viruses ; 13(9)2021 09 05.
Article in English | MEDLINE | ID: mdl-34578355

ABSTRACT

Antibodies that can neutralize diverse HIV-1 strains develop in ~10-20% of HIV-1 infected individuals, and their elicitation is a goal of vaccine design. Such antibodies can also serve as therapeutics for those who have already been infected with the virus. Structural characterizations of broadly reactive antibodies in complex with the HIV-1 spike indicate that there are a limited number of sites of vulnerability on the spike. Analysis of their structures can help reveal commonalities that would be useful in vaccine design and provide insights on combinations of antibodies that can be used to minimize the incidence of viral resistance mutations. In this review, we give an update on recent structures determined of the spike in complex with broadly neutralizing antibodies in the context of all epitopes on the HIV-1 spike identified to date.


Subject(s)
Epitopes/immunology , HIV Antibodies/immunology , HIV Infections/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Binding Sites , CD4 Antigens/chemistry , CD4 Antigens/immunology , Epitopes/genetics , HIV Antibodies/genetics , HIV Infections/virology , HIV-1/genetics , Humans , Mice , Mutation , Virus Internalization , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
6.
Viruses ; 13(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477902

ABSTRACT

Coronavirus research has gained tremendous attention because of the COVID-19 pandemic, caused by the novel severe acute respiratory syndrome coronavirus (nCoV or SARS-CoV-2). In this review, we highlight recent studies that provide atomic-resolution structural details important for the development of monoclonal antibodies (mAbs) that can be used therapeutically and prophylactically and for vaccines against SARS-CoV-2. Structural studies with SARS-CoV-2 neutralizing mAbs have revealed a diverse set of binding modes on the spike's receptor-binding domain and N-terminal domain and highlight alternative targets on the spike. We consider this structural work together with mAb effects in vivo to suggest correlations between structure and clinical applications. We also place mAbs against severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses in the context of the SARS-CoV-2 spike to suggest features that may be desirable to design mAbs or vaccines capable of conferring broad protection.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/therapy , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Epitope Mapping , Epitopes/immunology , Humans , Immunization, Passive/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/genetics , Severe Acute Respiratory Syndrome/therapy , Spike Glycoprotein, Coronavirus/genetics , Viral Vaccines/immunology , Virus Internalization/drug effects , COVID-19 Serotherapy
7.
Front Neurol ; 10: 360, 2019.
Article in English | MEDLINE | ID: mdl-31031692

ABSTRACT

The impact of Alzheimer's disease (AD) on the pupillary light response (PLR) is controversial, being dependent on the stage of the disease and on the experimental pupillometric protocols. The main hypothesis driving pupillometry research in AD is based on the concept that the AD-related neurodegeneration affects both the parasympathetic and the sympathetic arms of the PLR (cholinergic and noradrenergic theory), combined with additional alterations of the afferent limb, involving the melanopsin expressing retinal ganglion cells (mRGCs), subserving the PLR. Only a few studies have evaluated the value of pupillometry as a potential biomarker in AD, providing various results compatible with parasympathetic dysfunction, displaying increased latency of pupillary constriction to light, decreased constriction amplitude, faster redilation after light offset, decreased maximum velocity of constriction (MCV) and maximum constriction acceleration (MCA) compared to controls. Decreased MCV and MCA appeared to be the most accurate of all PLR parameters allowing differentiation between AD and healthy controls while increased post-illumination pupillary response was the most consistent feature, however, these results could not be replicated by more recent studies, focusing on early and pre-clinical stages of the disease. Whether static or dynamic pupillometry yields useful biomarkers for AD screening or diagnosis remains unclear. In this review, we synopsize the current knowledge on pupillometric features in AD and other neurodegenerative diseases, and discuss potential roles of pupillometry in AD detection, diagnosis and monitoring, alone or in combination with additional biomarkers.

8.
Sci Rep ; 9(1): 4945, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894608

ABSTRACT

Chromatic pupillometry is an emerging modality in the assessment of retinal and optic nerve disorders. Herein, we evaluate the effect of low and moderate refractive errors on pupillary responses to blue- and red-light stimuli in a healthy older population. This study included 139 participants (≥50 years) grouped by refractive error: moderate myopes (>-6.0D and ≤-3.0D, n = 24), low myopes (>-3.0D and <-0.5D, n = 30), emmetropes (≥-0.5D and ≤0.5D, n = 31) and hyperopes (>0.5D and <6.0D, n = 54). Participants were exposed to logarithmically ramping-up blue (462 nm) and red (638 nm) light stimuli, designed to sequentially activate rods, cones and intrinsically-photosensitive retinal ganglion cells. Pupil size was assessed monocularly using infra-red pupillography. Baseline pupil diameter correlated inversely with spherical equivalent (R = -0.26, P < 0.01), and positively with axial length (R = 0.37, P < 0.01) and anterior chamber depth (R = 0.43, P < 0.01). Baseline-adjusted pupillary constriction amplitudes to blue light did not differ between groups (P = 0.45), while constriction amplitudes to red light were greater in hyperopes compared to emmetropes (P = 0.04) at moderate to bright light intensities (12.25-14.0 Log photons/cm²/s). Our results demonstrate that low and moderate myopia do not alter pupillary responses to ramping-up blue- and red-light stimuli in healthy older individuals. Conversely, pupillary responses to red light should be interpreted cautiously in hyperopic eyes.


Subject(s)
Optic Nerve Diseases/diagnostic imaging , Pupil/physiology , Reflex, Pupillary/physiology , Refractive Errors/physiopathology , Retinal Diseases/diagnostic imaging , Aged , Color , Diagnostic Techniques, Ophthalmological , Female , Humans , Light , Male , Middle Aged , Optic Nerve Diseases/complications , Photic Stimulation/methods , Pupil/radiation effects , Refractive Errors/complications , Retinal Diseases/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...