Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 36(44): 6074-6084, 2017 11 02.
Article in English | MEDLINE | ID: mdl-28692043

ABSTRACT

Half of estrogen receptor-positive breast cancers contain a subpopulation of cytokeratin 5 (CK5)-expressing cells that are therapy resistant and exhibit increased cancer stem cell (CSC) properties. We and others have demonstrated that progesterone (P4) increases CK5+ breast cancer cells. We previously discovered that retinoids block P4 induction of CK5+ cells. Here we investigated the mechanisms by which progesterone receptors (PR) and retinoic acid receptors (RAR) regulate CK5 expression and breast CSC activity. After P4 treatment, sorted CK5+ compared to CK5- cells were more tumorigenic in vivo. In vitro, P4-treated breast cancer cells formed larger mammospheres and silencing of CK5 using small hairpin RNA abolished this P4-dependent increase in mammosphere size. Retinoic acid (RA) treatment blocked the P4 increase in CK5+ cells and prevented the P4 increase in mammosphere size. Dual small interfering RNA (siRNA) silencing of RARα and RARγ reversed RA blockade of P4-induced CK5. Using promoter deletion analysis, we identified a region 1.1 kb upstream of the CK5 transcriptional start site that is necessary for P4 activation and contains a putative progesterone response element (PRE). We confirmed by chromatin immunoprecipitation that P4 recruits PR to the CK5 promoter near the -1.1 kb essential PRE, and also to a proximal region near -130 bp that contains PRE half-sites and a RA response element (RARE). RA induced loss of PR binding only at the proximal site. Interestingly, RARα was recruited to the -1.1 kb PRE and the -130 bp PRE/RARE regions with P4, but not RA alone or RA plus P4. Treatment of breast cancer xenografts in vivo with the retinoid fenretinide reduced the accumulation of CK5+ cells during estrogen depletion. This reduction, together with the inhibition of CK5+ cell expansion through RAR/PR cross talk, may explain the efficacy of retinoids in prevention of some breast cancer recurrences.


Subject(s)
Breast Neoplasms/genetics , Keratin-5/genetics , Receptors, Progesterone/genetics , Receptors, Retinoic Acid/genetics , Retinoic Acid Receptor alpha/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Progesterone/genetics , Progesterone/metabolism , Promoter Regions, Genetic , Receptors, Estrogen/metabolism , Receptors, Retinoic Acid/metabolism , Retinoic Acid Receptor alpha/metabolism , Signal Transduction , Tretinoin/metabolism , Retinoic Acid Receptor gamma
2.
Oncogene ; 34(28): 3676-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25241899

ABSTRACT

Progesterone (P4) has emerged as an important hormone-regulating mammary stem cell (MaSC) populations. In breast cancer, P4 and synthetic analogs increase the number of stem-like cells within luminal estrogen receptor (ER)- and progesterone receptor (PR)-positive breast cancers. These cells gain expression of de-differentiated cell markers CD44 and cytokeratin 5 (CK5), lose luminal markers ER and PR, and are more therapy resistant. We previously described that P4 downregulation of microRNA (miR)-29a contributes to the expansion of CD44(high) and CK5(+) cells. Here we investigated P4 downregulation of miR-141, a member of the miR-200 family of tumor suppressors, in facilitating an increase in stem-like breast cancer cells. miR-141 was the sole member of the miR-200 family P4-downregulated at the mature miRNA level in luminal breast cancer cell lines. Stable inhibition of miR-141 alone increased the CD44(high) population, and potentiated P4-mediated increases in both CD44(high) and CK5(+) cells. Loss of miR-141 enhanced both mammosphere formation and tumor initiation. miR-141 directly targeted both PR and signal transducer and activator of transcription 5A (Stat5a), transcription factors important for MaSC expansion. miR-141 depletion increased PR protein levels, even in cell lines where PR expression is estrogen dependent. Stat5a suppression via small interfering RNA or a small-molecule inhibitor reduced the P4-dependent increase in CK5(+) and CD44(high) cells. These data support a mechanism by which P4-triggered loss of miR-141 facilitates breast cancer cell de-differentiation through deregulation of PR and Stat5a, two transcription factors important for controlling mammary cell fate.


Subject(s)
Breast Neoplasms/genetics , MicroRNAs/genetics , Neoplastic Stem Cells/drug effects , Progesterone/pharmacology , Progestins/pharmacology , STAT5 Transcription Factor/genetics , Tumor Suppressor Proteins/genetics , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Down-Regulation/drug effects , Female , Humans , Hyaluronan Receptors/metabolism , Keratin-5/metabolism , Mice , Neoplasm Transplantation , Neoplastic Stem Cells/pathology , Receptors, Progesterone
3.
Oncogene ; 32(20): 2555-64, 2013 May 16.
Article in English | MEDLINE | ID: mdl-22751119

ABSTRACT

The female hormone progesterone (P4) promotes the expansion of stem-like cancer cells in estrogen receptor (ER)- and progesterone receptor (PR)-positive breast tumors. The expanded tumor cells lose expression of ER and PR, express the tumor-initiating marker CD44, the progenitor marker cytokeratin 5 (CK5) and are more resistant to standard endocrine and chemotherapies. The mechanisms underlying this hormone-stimulated reprogramming have remained largely unknown. In the present study, we investigated the role of microRNAs in progestin-mediated expansion of this dedifferentiated tumor cell population. We demonstrate that P4 rapidly downregulates miR-29 family members, particularly in the CD44(+) cell population. Downregulation of miR-29 members potentiates the expansion of CK5(+) and CD44(+) cells in response to progestins, and results in increased stem-like properties in vitro and in vivo. We demonstrate that miR-29 directly targets Krüppel-like factor 4 (KLF4), a transcription factor required for the reprogramming of differentiated cells to pluripotent stem cells, and for the maintenance of breast cancer stem cells. These results reveal a novel mechanism, whereby progestins increase the stem cell-like population in hormone-responsive breast cancers, by decreasing miR-29 to augment PR-mediated upregulation of KLF4. Elucidating the mechanisms whereby hormones mediate the expansion of stem-like cells furthers our understanding of the progression of hormone-responsive breast cancers.


Subject(s)
Breast Neoplasms/genetics , Cell Differentiation/genetics , Kruppel-Like Transcription Factors/genetics , MicroRNAs/genetics , Progestins/pharmacology , 3' Untranslated Regions , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hyaluronan Receptors/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, SCID , MicroRNAs/metabolism , Progesterone/pharmacology , Up-Regulation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...