Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 11(24): 4270-4279, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33196174

ABSTRACT

Designer receptors exclusively activated by designer drugs (DREADDs) have been successfully employed to activate signaling pathways associated with specific muscarinic acetylcholine receptor (mAChR) subtypes. The M1 DREADD mAChR displays minimal responsiveness to the endogenous agonist acetylcholine (ACh) but responds to clozapine-N-oxide (CNO), an otherwise pharmacologically inert ligand. We have previously shown that benzyl quinolone carboxylic acid (BQCA), an M1 mAChR positive allosteric modulator (PAM), can rescue ACh responsiveness at these receptors. However, whether this effect is chemotype specific or applies to next-generation M1 PAMs with distinct scaffolds is unknown. Here, we reveal that new M1 PAMs restore ACh function at the M1 DREADD while modulating ACh binding at the M1 wild-type mAChR. Importantly, we demonstrate that the modulation of ACh function by M1 PAMs is translated in vivo using transgenic M1 DREADD mice. Our data provide important insights into mechanisms that define allosteric ligand modulation of agonist affinity vs efficacy and how these effects play out in the regulation of in vivo responses.


Subject(s)
Acetylcholine , Receptor, Muscarinic M1 , Allosteric Regulation , Animals , CHO Cells , Cricetinae , Cricetulus , Mice , Receptor, Muscarinic M1/genetics
2.
Nat Chem Biol ; 16(3): 240-249, 2020 03.
Article in English | MEDLINE | ID: mdl-32080630

ABSTRACT

Cholinesterase inhibitors, the current frontline symptomatic treatment for Alzheimer's disease (AD), are associated with low efficacy and adverse effects. M1 muscarinic acetylcholine receptors (M1 mAChRs) represent a potential alternate therapeutic target; however, drug discovery programs focused on this G protein-coupled receptor (GPCR) have failed, largely due to cholinergic adverse responses. Employing novel chemogenetic and phosphorylation-deficient, G protein-biased, mouse models, paired with a toolbox of probe molecules, we establish previously unappreciated pharmacologically targetable M1 mAChR neurological processes, including anxiety-like behaviors and hyper-locomotion. By mapping the upstream signaling pathways regulating these responses, we determine the importance of receptor phosphorylation-dependent signaling in driving clinically relevant outcomes and in controlling adverse effects including 'epileptic-like' seizures. We conclude that M1 mAChR ligands that promote receptor phosphorylation-dependent signaling would protect against cholinergic adverse effects in addition to driving beneficial responses such as learning and memory and anxiolytic behavior relevant for the treatment of AD.


Subject(s)
Receptor, Muscarinic M1/genetics , Receptor, Muscarinic M1/metabolism , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Animals , Cholinergic Agents/pharmacology , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/pharmacology , Disease Models, Animal , Drug Design , Female , Gene Knock-In Techniques , Male , Mice , Mice, Inbred C57BL , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...