Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Gen Virol ; 97(10): 2482-2487, 2016 10.
Article in English | MEDLINE | ID: mdl-27488948

ABSTRACT

Reoviruses (family Reoviridae) infect vertebrate and invertebrate hosts with clinical effects ranging from inapparent to lethal. Here, we describe the discovery and characterization of Largemouth bass reovirus (LMBRV), found during investigation of a mortality event in wild largemouth bass (Micropterus salmoides) in 2015 in WI, USA. LMBRV has spherical virions of approximately 80 nm diameter containing 10 segments of linear dsRNA, aligning it with members of the genus Orthoreovirus, which infect mammals and birds, rather than members of the genus Aquareovirus, which contain 11 segments and infect teleost fishes. LMBRV is only between 24 % and 68 % similar at the amino acid level to its closest relative, Piscine reovirus (PRV), the putative cause of heart and skeletal muscle inflammation of farmed salmon. LMBRV expands the known diversity and host range of its lineage, which suggests that an undiscovered diversity of related pathogenic reoviruses may exist in wild fishes.


Subject(s)
Bass/virology , Fish Diseases/virology , Reoviridae Infections/veterinary , Reoviridae/isolation & purification , Animals , Fish Diseases/mortality , Genome, Viral , Phylogeny , Reoviridae/classification , Reoviridae/genetics , Reoviridae/physiology , Reoviridae Infections/mortality , Reoviridae Infections/virology
2.
Integr Environ Assess Manag ; 9(3): 496-507, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23307421

ABSTRACT

Estuarine eutrophication as a result of agricultural land use, including the use of chemical fertilizers, is increasing worldwide. Prince Edward Island (PEI), Canada has very high agricultural intensity by international standards with approximately 44% of the land area under production, and some watersheds in excess of 75% agricultural land-use. The type of agriculture is also intensive with primarily row crops that have high chemical fertilizer and pesticide usage. In light of these stressors, the hypothesis of this study was that mummichog (Fundulus heteroclitus) population parameters would change with point and nonpoint source pollution, and that multivariate statistics could be used to draw associations with specific stressors. Fish were sampled on a monthly basis from May through August at 7 estuaries spanning a range of land use, nutrient, and contaminant loadings. A suite of environmental variables were simplified into 3 principal components: PC1 representing agricultural land use, N loading, and plant habitat, PC2 being dominated by sediment sand and silt distribution, and PC3 largely reflecting P loading and sediment organic matter. There were significant differences in abundance of both adult and young-of-the-year mummichog, and these changes associated most strongly with PC1, the largely N-driven agricultural influences. In contrast, somatic variables such as liver and gonad size did not show strong association with the environmental quality principal component scores. The sand and silt PC2 appeared to have the opposite association with the biological data, with siltier environments correlating to older, larger, less dense populations of mummichog. Although pesticide residues were detected in estuarine sediment, there was no clear relationship between these and watershed agricultural intensity or biochemical indicators. There was, however, a strong relationship between agricultural environmental variables (PC1) and in vitro steroid production that is suggestive of a potential chemical effect. Eutrophication appeared to be a primary stressor affecting mummichog populations, as nutrient enrichment was associated with changes in habitat variables and these in turn were associated with high mummichog density. Thus, mummichog population demographics appear to have use as an indicator of adverse or worsening conditions in estuaries. We concluded that, based on the subset of environmental factors evaluated, the nonpoint-source inputs of sediments and nutrients exerted the greatest influence on mummichog populations in PEI estuaries.


Subject(s)
Environmental Monitoring/methods , Estuaries , Eutrophication , Fundulidae/physiology , Geologic Sediments/chemistry , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Agriculture , Animals , Body Composition/drug effects , Energy Intake , Energy Metabolism , Female , Fertilizers/toxicity , Fundulidae/growth & development , Liver/anatomy & histology , Male , Multivariate Analysis , Population Dynamics , Prince Edward Island
3.
Aquat Toxicol ; 90(4): 269-76, 2008 Dec 11.
Article in English | MEDLINE | ID: mdl-19004509

ABSTRACT

A method to evaluate the expression of three hormone responsive genes, vitellogenin (estrogens), spiggin (androgens), and an androgen receptor (ARbeta) using real-time PCR in threespine stickleback is presented. Primers were designed from previously characterised spiggin and ARbeta sequences, while a homology cloning strategy was used to isolate a partial gene sequence for stickleback vitellogenin (Vtg). Spiggin mRNA was significantly higher in kidneys of field-caught males compared to females by greater than five orders of magnitude while ARbeta levels were only 1.4-fold higher in males. Female fish had four order of magnitude higher liver Vtg expression than wild-captured males. To determine the sensitivity of these genes to induction by hormones, male and female sticklebacks were exposed to 1, 10 and 100 ng/L of methyltestosterone (MT) or estradiol (E2) in a flow-through exposure system for 7 days. Spiggin induction in females, and Vtg induction in males were both detectable at 10 ng/L of MT and E2, respectively. MT exposure did not induce ARbeta expression in the kidneys of female stickleback. In vitro gonadal steroid hormones production was measured in testes and ovaries of exposed stickleback to compare gene expression endpoints to an endpoint of hormonal reproductive alteration. Reduction in testosterone production in ovaries at all three MT exposure concentrations, and ovarian estradiol synthesis at the 100 ng/L exposure were the only effects observed in the in vitro steroidogenesis for either hormone exposure. Application of these methods to assess both androgenic, estrogenic, and anti-steroidogenic properties of environmental contaminants in a single fish species will be a valuable tool for identifying compounds causing reproductive dysfunction in fishes.


Subject(s)
Estradiol/toxicity , Fish Proteins/genetics , Gene Expression Regulation/drug effects , Methyltestosterone/toxicity , Smegmamorpha/physiology , Water Pollutants, Chemical/toxicity , Animals , Female , Male , Molecular Sequence Data , Receptors, Androgen/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sex Factors , Vitellogenins/genetics
4.
Ecotoxicol Environ Saf ; 69(2): 187-98, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17604103

ABSTRACT

Two experiments using rainbow trout (Oncorhynchus mykiss) were conducted to examine the combined effects of energy intake as manipulated by ration and pulp and paper mill effluent exposure over either one, or two consecutive reproductive cycles. This study demonstrated that the level of energy intake affected the full range of measured parameters from energy allocation to somatic growth and the gonadal development, steroid production and hematology. Increasing ration level expectedly increased growth, condition, liver and gonad size. Female trout in the higher ration treatments produced more follicles and had larger eggs, investing the same relative proportion of total energy into ovarian development. Sex steroid levels and hematological parameters were also positively influenced by increasing ration level in males and females. By far, the most dramatic impact of reduced ration on reproduction was to substantially reduce the frequency of sexually maturing fish. The effects of effluent exposure were not as marked as those linked to ration level and typically did not manifest unless fish were exposed through two consecutive reproductive cycles. The physiological effects of pulp and paper effluent exposure observed in these experiments were not consistent between the two experiments conducted herein, nor were they consistent with previously observed impacts in similar experiments with this effluent. Effluent exposure over one reproductive cycle did not impact physiological parameters in trout. However, when effluent exposure was maintained over two reproductive cycles, a new pattern of effluent response emerged including increased condition factor in both sexes, a decrease in the potential ability of the blood of females to transport oxygen, and increased sex steroids and reproductive investment in males. Effluent was also observed to cause reduced growth in male trout over two years. The effects of ration on gonad and liver size were far more obvious and consistent when a longer exposure was employed, thus, it appears to take more than one full year for energy intake changes to be reflected in those particular physiological endpoints.


Subject(s)
Industrial Waste/adverse effects , Oncorhynchus mykiss/physiology , Paper , Water Pollutants, Chemical/toxicity , Animals , Cytochrome P-450 CYP1A1/metabolism , Energy Intake/drug effects , Female , Fertility/drug effects , Gonadal Steroid Hormones/blood , Gonads/drug effects , Gonads/growth & development , Hematologic Tests , Liver/drug effects , Liver/enzymology , Liver/growth & development , Male , Muscles , Organ Size , Spleen/drug effects , Spleen/growth & development , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...