Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Emerg Infect Dis ; 28(5)2022 05.
Article in English | MEDLINE | ID: mdl-35451367

ABSTRACT

We describe the global molecular epidemiology of 229 carbapenemase-producing Escherichia coli in 36 countries during 2015-2017. Common carbapenemases were oxacillinase (OXA) 181 (23%), New Delhi metallo-ß-lactamase (NDM) 5 (20%), OXA-48 (17%), Klebsiella pneumoniae carbapenemase 2 (15%), and NDM-1 (10%). We identified 5 dominant sequence types (STs); 4 were global (ST410, ST131, ST167, and ST405), and 1 (ST1284) was limited to Turkey. OXA-181 was frequent in Jordan (because of the ST410-B4/H24RxC subclade) and Turkey (because of ST1284). We found nearly identical IncX3-blaOXA-181 plasmids among 11 STs from 12 countries. NDM-5 was frequent in Egypt, Thailand (linked with ST410-B4/H24RxC and ST167-B subclades), and Vietnam (because of ST448). OXA-48 was common in Turkey (linked with ST11260). Global K. pneumoniae carbapenemases were linked with ST131 C1/H30 subclade and NDM-1 with various STs. The global carbapenemase E. coli population is dominated by diverse STs with different characteristics and varied geographic distributions, requiring ongoing genomic surveillance.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Escherichia coli Infections , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Humans , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , beta-Lactamases/genetics
2.
J Antimicrob Chemother ; 76(5): 1135-1139, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33547472

ABSTRACT

INTRODUCTION: Escherichia coli ST131 is the most common multidrug-resistant (MDR) E. coli clone causing bloodstream infections (BSIs) in Calgary. This study describes patient characteristics and spatial distribution of ST131 subclades C1 and C2 causing BSIs in Calgary. METHODS: E. coli from blood (n = 685) obtained in Calgary, Canada, (2016) were PCR screened for ST131 and positives (n = 141) underwent whole genome sequencing. Patient characteristics were analysed using Fisher's Exact/t-tests and spatial analysis was used to identify clusters. RESULTS: Overall, 21% of E. coli was identified as ST131 and clade C dominated the population. ST131-C2 was associated with blaCTX-M-15 and significantly more MDR than ST131-C1. The spatial distribution in Calgary showed that ST131-C1 was mainly present in long-term care (LTC) residents whereas ST131-C2 clustered in a specific North East (NE) Calgary sector comprising of six neighbourhoods without LTC centres. This NE sector has high immigration and travel rates from the Indian subcontinent. CONCLUSIONS: This study showed that ST131 C subclades have different geographical distribution patterns in Calgary. We believe that recent travel to and immigration from certain high-risk regions for antimicrobial resistance are responsible for the ST131-C2 NE Calgary clustering pattern.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Canada/epidemiology , Drug Resistance, Multiple, Bacterial , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Proteins/genetics , Humans , beta-Lactamases/genetics
3.
Emerg Infect Dis ; 26(12): 2907-2915, 2020 12.
Article in English | MEDLINE | ID: mdl-33219650

ABSTRACT

Global expansion of antimicrobial drug-resistant Escherichia coli sequence type (ST) 131 is unrivaled among human bacteria. Understanding trends among ST131 clades will help with designing prevention strategies. We screened E. coli from blood samples (n = 1,784) obtained in Calgary, Alberta, Canada, during 2006, 2012, and 2016 by PCR for ST131 and positive samples (n = 344) underwent whole-genome sequencing. The incidence rate per 100,000 residents increased from 4.91 during 2006 to 12.35 during 2012 and 10.12 during 2016. ST131 belonged to clades A (10%), B (9%), and C (81%). Clades C1-nonM27 and B were common during 2006, and C2 containing blaCTX-M-15, C1-M27 containing blaCTX-M-27, and A were responsible for the increase of ST131 during 2012 and 2016. C2 was the most antimicrobial drug-resistant subclade and increased exponentially over time. Eradicating ST131, more specifically the C2 subclade, will lead to considerable public health benefits for persons in Calgary.


Subject(s)
Escherichia coli Infections , Escherichia coli , Alberta/epidemiology , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Humans , Population Dynamics , beta-Lactamases/genetics
4.
Infect Genet Evol ; 81: 104265, 2020 07.
Article in English | MEDLINE | ID: mdl-32112974

ABSTRACT

The abrupt expansion of Escherichia coli sequence type (ST) 131 is unmatched among Gram negative bacteria. In many ways, ST131 can be considered a real-world model for the complexities involved in the evolution of a multidrug resistant pathogen. While much progress has been made on our insights into the organism's population structure, pathogenicity and drug resistance profile, significant gaps in our knowledge remain. Whole genome studies have shed light on key mutations and genes that have been selected against the background of antibiotics, but in most cases such events are inferred and not supported by experimental data. Notable examples include the unknown fitness contribution made by specific plasmids, genomic islands and compensatory mutations. Furthermore, questions remain like why this organism in particular achieved such considerable success in such a short time span, compared to other more pathogenic and resistant clones. Herein, we document what is known regarding the genetics of this organism since its first description in 2008, but also highlight where work remains to be done for a truly comprehensive understanding of the biology of ST131, in order to account for its dramatic rise to prominence.


Subject(s)
Escherichia coli/genetics , Animals , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/microbiology , Genome, Bacterial/genetics , Humans , Mutation/genetics , Plasmids/genetics
5.
Appl Environ Microbiol ; 86(4)2020 02 03.
Article in English | MEDLINE | ID: mdl-31811043

ABSTRACT

In the ten years since its discovery, the Escherichia coli clone sequence type 131 (ST131) has become a major international health threat, with the multidrug-resistant and extended-spectrum ß-lactamase (ESBL)-producing clade C emerging as the globally dominant form. ST131 has previously been isolated from wastewater; however, most of these studies selectively screened for ESBL-producing organisms, thereby missing the majority of remaining ST131 clades. In this study, we used a high-throughput PCR-based screening strategy to comprehensively examine wastewater for the presence of ST131 over a 1-year period. Additional multiplex PCRs were used to differentiate clades and obtain an unbiased account of the total ST131 population structure within the collection. Furthermore, antimicrobial susceptibility profiles of all ST131-positive samples were tested against a range of commonly used antibiotics. From a total of over 3,762 E. coli wastewater samples, 1.86% (n = 70) tested positive for ST131, with the majority being clade A isolates. In total, 63% (n = 44) were clade A, 29% (n = 20) were clade B, 1% (n = 1) were clade C0, 6% (n = 4) were clade C1, and 1% (n = 1) were clade C2. In addition, a very high rate of resistance to commonly used antibiotics among wastewater isolates is reported, with 72.7% (n = 32) of clade A resistant to ciprofloxacin and high rates of resistance to gentamicin, sulfamethoxazole-trimethoprim, and tetracycline in clades that are typically sensitive to antibiotics.IMPORTANCE ST131 is a global pathogen. This clone causes urinary tract infections and is frequently isolated from human sources. However, little is known about ST131 from environmental sources. With the widely reported increase in antibiotic concentrations found in wastewater, there is additional selection pressure for the emergence of antibiotic-resistant ST131 in this niche. The unbiased screening approach reported herein revealed that previously antibiotic-sensitive lineages of ST131 are now resistant to commonly used antibiotics present in wastewater systems and may be capable of surviving UV sterilization. This is the most comprehensive account of ST131 in the wastewater niche to date and an important step in better understanding the ecology of this global pathogen.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Fluoroquinolones/pharmacology , Wastewater/microbiology , Alberta , Escherichia coli/classification , Escherichia coli/isolation & purification , High-Throughput Nucleotide Sequencing , Polymerase Chain Reaction
6.
PLoS One ; 14(12): e0219879, 2019.
Article in English | MEDLINE | ID: mdl-31851668

ABSTRACT

The crisis of antimicrobial resistance is driving research into the phenomenon of collateral sensitivity. Sometimes, when a bacterium evolves resistance to one antimicrobial, it becomes sensitive to others. In this study, we have investigated the utility of Phenotype Microarray (PM) plates for identifying collateral sensitivities with unprecedented throughput. We assessed the relative resistance/sensitivity phenotypes of nine strains of Staphylococcus aureus (two laboratory strains and seven clinical isolates) towards the 72 antimicrobials contained in three PM plates. In general, the PM plates reported on resistance and sensitivity with a high degree of reproducibility. However, a rigorous comparison of PM growth phenotypes with minimum inhibitory concentration (MIC) measurements revealed a trade-off between throughput and accuracy. Small differences in PM growth phenotype did not necessarily correlate with changes in MIC. Thus, we conclude that PM plates are useful for the rapid and high-throughput assessment of large changes in collateral sensitivity phenotypes during the evolution of antimicrobial resistance, but more subtle examples of cross-resistance or collateral sensitivity cannot be identified reliably using this approach.


Subject(s)
Adaptation, Physiological/drug effects , Anti-Bacterial Agents/pharmacology , Drug Collateral Sensitivity/drug effects , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Humans , Microbial Sensitivity Tests , Phenotype , Staphylococcal Infections/microbiology , Staphylococcus aureus/isolation & purification
7.
Proteins ; 87(8): 699-705, 2019 08.
Article in English | MEDLINE | ID: mdl-30958578

ABSTRACT

InterPro family IPR020489 comprises ~1000 uncharacterized bacterial proteins. Previously we showed that overexpressing the Escherichia coli representative of this family, EcYejG, conferred low-level resistance to aminoglycoside antibiotics. In an attempt to shed light on the biochemical function of EcYejG, we have solved its structure using multinuclear solution NMR spectroscopy. The structure most closely resembles that of domain III from elongation factor G (EF-G). EF-G catalyzes ribosomal translocation and mutations in EF-G have also been associated with aminoglycoside resistance. While we were unable to demonstrate a direct interaction between EcYejG and the ribosome, the protein might play a role in translation.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Peptide Elongation Factor G/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Biosynthesis , Protein Conformation , Protein Domains , Ribosomes/chemistry
8.
PeerJ ; 5: e3244, 2017.
Article in English | MEDLINE | ID: mdl-28480139

ABSTRACT

BACKGROUND: Many bacteria are facultative anaerobes, and can proliferate in both anoxic and oxic environments. Under anaerobic conditions, fermentation is the primary means of energy generation in contrast to respiration. Furthermore, the rates and spectra of spontaneous mutations that arise during anaerobic growth differ to those under aerobic growth. A long-term selection experiment was undertaken to investigate the genetic changes that underpin how the facultative anaerobe, Escherichia coli, adapts to anaerobic environments. METHODS: Twenty-one populations of E. coli REL4536, an aerobically evolved 10,000th generation descendent of the E. coli B strain, REL606, were established from a clonal ancestral culture. These were serially sub-cultured for 2,000 generations in a defined minimal glucose medium in strict aerobic and strict anaerobic environments, as well as in a treatment that fluctuated between the two environments. The competitive fitness of the evolving lineages was assessed at approximately 0, 1,000 and 2,000 generations, in both the environment of selection and the alternative environment. Whole genome re-sequencing was performed on random colonies from all lineages after 2,000-generations. Mutations were identified relative to the ancestral genome, and based on the extent of parallelism, traits that were likely to have contributed towards adaptation were inferred. RESULTS: There were increases in fitness relative to the ancestor among anaerobically evolved lineages when tested in the anaerobic environment, but no increases were found in the aerobic environment. For lineages that had evolved under the fluctuating regime, relative fitness increased significantly in the anaerobic environment, but did not increase in the aerobic environment. The aerobically-evolved lineages did not increase in fitness when tested in either the aerobic or anaerobic environments. The strictly anaerobic lineages adapted more rapidly to the anaerobic environment than did the fluctuating lineages. Two main strategies appeared to predominate during adaptation to the anaerobic environment: modification of energy generation pathways, and inactivation of non-essential functions. Fermentation pathways appeared to alter through selection for mutations in genes such as nadR, adhE, dcuS/R, and pflB. Mutations were frequently identified in genes for presumably dispensable functions such as toxin-antitoxin systems, prophages, virulence and amino acid transport. Adaptation of the fluctuating lineages to the anaerobic environments involved mutations affecting traits similar to those observed in the anaerobically evolved lineages. DISCUSSION: There appeared to be strong selective pressure for activities that conferred cell yield advantages during anaerobic growth, which include restoring activities that had previously been inactivated under long-term continuous aerobic evolution of the ancestor.

9.
PLoS Genet ; 13(1): e1006570, 2017 01.
Article in English | MEDLINE | ID: mdl-28103245

ABSTRACT

Oxidative stress is a major cause of mutation but little is known about how growth in the absence of oxygen impacts the rate and spectrum of mutations. We employed long-term mutation accumulation experiments to directly measure the rates and spectra of spontaneous mutation events in Escherichia coli populations propagated under aerobic and anaerobic conditions. To detect mutations, whole genome sequencing was coupled with methods of analysis sufficient to identify a broad range of mutational classes, including structural variants (SVs) generated by movement of repetitive elements. The anaerobically grown populations displayed a mutation rate nearly twice that of the aerobic populations, showed distinct asymmetric mutational strand biases, and greater insertion element activity. Consistent with mutation rate and spectra observations, genes for transposition and recombination repair associated with SVs were up-regulated during anaerobic growth. Together, these results define differences in mutational spectra affecting the evolution of facultative anaerobes.


Subject(s)
Escherichia coli/genetics , Gene Frequency , Mutation Rate , Oxygen/metabolism , Anaerobiosis , DNA Repair , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Repetitive Sequences, Nucleic Acid/genetics
10.
Sci Rep ; 6: 35198, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27734909

ABSTRACT

Chemoreceptors enable bacteria to detect chemical signals in the environment and navigate towards niches that are favourable for survival. The sensor domains of chemoreceptors function as the input modules for chemotaxis systems, and provide sensory specificity by binding specific ligands. Cache-like domains are the most common extracellular sensor module in prokaryotes, however only a handful have been functionally or structurally characterised. Here, we have characterised a chemoreceptor Cache-like sensor domain (PscD-SD) from the plant pathogen Pseudomonas syringae pv. actinidiae (Psa). High-throughput fluorescence thermal shift assays, combined with isothermal thermal titration calorimetry, revealed that PscD-SD binds specifically to C2 (glycolate and acetate) and C3 (propionate and pyruvate) carboxylates. We solved the structure of PscD-SD in complex with propionate using X-ray crystallography. The structure reveals the key residues that comprise the ligand binding pocket and dictate the specificity of this sensor domain for C2 and C3 carboxylates. We also demonstrate that all four carboxylate ligands are chemoattractants for Psa, but only two of these (acetate and pyruvate) are utilisable carbon sources. This result suggests that in addition to guiding the bacteria towards nutrients, another possible role for carboxylate sensing is in locating potential sites of entry into the host plant.


Subject(s)
Carboxylic Acids/metabolism , Chemotactic Factors/metabolism , Chemotaxis/physiology , Pseudomonas syringae/metabolism , Bacterial Proteins/metabolism , Crystallography, X-Ray/methods , Ligands
11.
Biol Lett ; 12(8)2016 08.
Article in English | MEDLINE | ID: mdl-27555646

ABSTRACT

Life has existed on the Earth for approximately four billion years. The sheer depth of evolutionary time, and the diversity of extant species, makes it tempting to assume that all the key biochemical innovations underpinning life have already happened. But we are only a little over halfway through the trajectory of life on our planet. In this Opinion piece, we argue: (i) that sufficient time remains for the evolution of new processes at the heart of metabolic biochemistry and (ii) that synthetic biology is providing predictive insights into the nature of these innovations. By way of example, we focus on engineered solutions to existing inefficiencies in energy generation, and on the complex, synthetic regulatory circuits that are currently being implemented.


Subject(s)
Biological Evolution , Earth, Planet , Life
SELECTION OF CITATIONS
SEARCH DETAIL
...