Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Biochem Behav ; 212: 173311, 2022 01.
Article in English | MEDLINE | ID: mdl-34863797

ABSTRACT

We previously identified in laboratory mice an inactive state [being awake with eyes open motionless within the home cage; inactive but awake, 'IBA'] sharing etiological factors and symptoms with human clinical depression. We further test the hypothesis that greater time spent displaying IBA indicates a depression-like state in mice by investigating whether the antidepressant Venlafaxine, environmental enrichment, and their combination, alleviate IBA. Seventy-two C57BL/6J and 72 DBA/2J female mice were pseudo-randomly housed post-weaning in mixed strain-pairs in non-enriched (NE; 48 pairs) or in environmentally enriched (EE; 24 pairs) cages. After 34 days, half of the mice housed in NE cages were either relocated to EE cages or left in NE cages. For each of these conditions, half of the mice drank either a placebo or the antidepressant Venlafaxine (10 mg/kg). The 48 mice housed in EE cages were all relocated to NE cages and allocated to either the placebo (n = 24) or Venlafaxine (n = 24). IBA data were collected prior to and after environmental adjustment by trained observers blind to the pharmacological and environmental adjustment treatments. Data were analyzed using GLM models. NE cages triggered more IBA than EE cages (Likelihood-Ratio-Test Chi23 = 53.501, p < 0.0001). Venlafaxine and environmental enrichment appeared equally effective at reducing IBA (LRT Chi23 = 18.262, p < 0.001), and combining these approaches did not magnify their effects. Enrichment removal triggered IBA increase (LRT Chi21 = 23.050, p < 0.001), but Venlafaxine did not overcome the increase in IBA resulting from enrichment loss (LTR Chi21 = 0.081, p = 0.775). Theoretical implications for putative depression-like states in mice, and further research directions, are discussed.


Subject(s)
Behavior, Animal/drug effects , Depression/drug therapy , Motor Activity/drug effects , Venlafaxine Hydrochloride/pharmacology , Animals , Antidepressive Agents, Second-Generation/pharmacology , Depression/metabolism , Environment , Female , Housing, Animal , Mice , Mice, Inbred C57BL , Mice, Inbred DBA
2.
PLoS One ; 14(12): e0226438, 2019.
Article in English | MEDLINE | ID: mdl-31887167

ABSTRACT

Affect-driven cognitive biases can be used as an indicator of affective (emotional) state. Since humans in negative affective states demonstrate greater responses to negatively-valenced stimuli, we investigated putative affect-related bias in mice by monitoring their response to unexpected, task-irrelevant stimuli of different valence. Thirty-one C57BL/6J and 31 DBA/2J females were individually trained to return to their home-cage in a runway. Mice then underwent an affective manipulation acutely inducing a negative (NegAff) or a comparatively less negative (CompLessNeg) affective state before immediately being tested in the runway with either an 'attractive' (familiar food) or 'threatening' (flashing light) stimulus. Mice were subsequently trained and tested again (same affective manipulation) with the alternative stimulus. As predicted, mice were slower to approach the light and spent more time with the food. DBA/2J mice were slower than C57BL/6J overall. Contrary to predictions, NegAff mice tended to approach both stimuli more readily than CompLessNeg mice, especially the light, and even more so for DBA/2Js. Although the stimuli successfully differentiated the response of mice to unexpected, task-irrelevant stimuli, further refinement may be required to disentangle the effects of affect manipulation and arousal on the response to valenced stimuli. The results also highlight the significant importance of considering strain differences when developing cognitive tasks.


Subject(s)
Affect/physiology , Aging/psychology , Cognition/physiology , Animals , Bias , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...