Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroradiology ; 61(5): 603-611, 2019 May.
Article in English | MEDLINE | ID: mdl-30796469

ABSTRACT

PURPOSE: To refine methods that assess structural brain abnormalities and calculate intracranial volumes in fetuses with congenital heart diseases (CHD) using in utero MR (iuMR) imaging. Our secondary objective was to assess the prevalence of brain abnormalities in this high-risk cohort and compare the brain volumes with normative values. METHODS: We performed iuMR on 16 pregnant women carrying a fetus with CHD and gestational age ≥ 28-week gestation and no brain abnormality on ultrasonography. All cases had fetal echocardiography by a pediatric cardiologist. Structural brain abnormalities on iuMR were recorded. Intracranial volumes were made from 3D FIESTA acquisitions following manual segmentation and the use of 3D Slicer software and were compared with normal fetuses. Z scores were calculated, and regression analyses were performed to look for differences between the normal and CHD fetuses. RESULTS: Successful 2D and 3D volume imaging was obtained in all 16 cases within a 30-min scan. Despite normal ultrasonography, 5/16 fetuses (31%) had structural brain abnormalities detected by iuMR (3 with ventriculomegaly, 2 with vermian hypoplasia). Brain volume, extra-axial volume, and total intracranial volume were statistically significantly reduced, while ventricular volumes were increased in the CHD cohort. CONCLUSION: We have shown that it is possible to perform detailed 2D and 3D studies using iuMR that allow thorough investigation of all intracranial compartments in fetuses with CHD in a clinically appropriate scan time. Those fetuses have a high risk of structural brain abnormalities and smaller brain volumes even when brain ultrasonography is normal.


Subject(s)
Brain/abnormalities , Brain/diagnostic imaging , Heart Defects, Congenital/complications , Magnetic Resonance Imaging/methods , Adult , Case-Control Studies , Echocardiography , Feasibility Studies , Female , Heart Defects, Congenital/diagnostic imaging , Humans , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Organ Size , Pregnancy , Prenatal Diagnosis , Prospective Studies , Software
2.
Eur Radiol ; 29(7): 3488-3495, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30683990

ABSTRACT

PURPOSE: To describe the normal linear measurements of the skull (bi-parietal diameter and occipito-frontal diameter) and intracranial volumes (ventricular volume, brain parenchymal volume, extra-axial volume and total intra-cranial volume) in normal fetuses. MATERIALS AND METHODS: We recruited pregnant women from low-risk pregnancies whose fetuses had normal ultrasound and in utero MR studies. All volunteers had in utero MR imaging on the same 1.5T MR scanner with a protocol consisting of routine and 3D steady-state volume imaging of the fetal brain. Linear measurements of the skull were made using the volume imaging. The 3D volume imaging also was manually segmented to delineate the intracranial compartments described above to determine quantitative values for each. RESULTS: Two hundred normal fetuses were studied with gestational ages between 18 and 37 weeks. The linear skull measurements made on in utero MR imaging closely correlate with published data from ultrasonography. The intracranial volume data is presented as graphs and as tabular summaries of 3rd, 10th, 50th, 90th and 97th centiles. CONCLUSION: It is now possible to measure the volumes of the intracranial compartments in individual fetuses using ultrafast in utero MR techniques. KEY POINTS: • There are limitations in using the skull size of the fetus to comment on the state of the fetal brain. • Volumes for the intracranial compartments are presented, based on in utero MR imaging of the fetal brain between 18 and 37 weeks gestational age. • Those normative values can be used to assess fetuses with known or suspected structural brain abnormalities and may assist the differential diagnosis provided by visual assessment of routine iuMR studies.


Subject(s)
Brain/diagnostic imaging , Fetus/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Prenatal Diagnosis/methods , Brain/embryology , Female , Gestational Age , Humans , Organ Size , Pregnancy , Prospective Studies , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...