Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
2.
Adv Mater ; 36(24): e2312008, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501999

ABSTRACT

Antiferromagnetic (AFM) materials are a pathway to spintronic memory and computing devices with unprecedented speed, energy efficiency, and bit density. Realizing this potential requires AFM devices with simultaneous electrical writing and reading of information, which are also compatible with established silicon-based manufacturing. Recent experiments have shown tunneling magnetoresistance (TMR) readout in epitaxial AFM tunnel junctions. However, these TMR structures are not grown using a silicon-compatible deposition process, and controlling their AFM order required external magnetic fields. Here are shown three-terminal AFM tunnel junctions based on the noncollinear antiferromagnet PtMn3, sputter-deposited on silicon. The devices simultaneously exhibit electrical switching using electric currents, and electrical readout by a large room-temperature TMR effect. First-principles calculations explain the TMR in terms of the momentum-resolved spin-dependent tunneling conduction in tunnel junctions with noncollinear AFM electrodes.

3.
Sci Rep ; 14(1): 95, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168577

ABSTRACT

Synthetic antiferromagnetic structures can exhibit the advantages of high velocity similarly to antiferromagnets with the additional benefit of being imaged and read-out through techniques applied to ferromagnets. Here, we explore the potential and limits of synthetic antiferromagnets to uncover ways to harness their valuable properties for applications. Two synthetic antiferromagnetic systems have been engineered and systematically investigated to provide an informed basis for creating devices with maximum potential for data storage, logic devices, and skyrmion racetrack memories. The two systems considered are (system 1) CoB/Ir/Pt of N repetitions with Ir inducing the negative coupling between the ferromagnetic layers and (system 2) two ferromagnetically coupled multilayers of CoB/Ir/Pt, coupled together antiferromagnetically with an Ir layer. From the hysteresis, it is found that system 1 shows stable antiferromagnetic interlayer exchange coupling between each magnetic layer up to N = 7. Using Kerr imaging, the two ferromagnetic multilayers in system 2 are shown to undergo separate maze-like switches during hysteresis. Both systems are also studied as a function of temperature and show different behaviors. Micromagnetic simulations predict that in both systems the skyrmion Hall angle is suppressed with the skyrmion velocity five times higher in system 1 than system 2.

4.
Sci Adv ; 9(50): eadk1430, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38091395

ABSTRACT

Current-induced self-sustained magnetization oscillations in spin-torque nano-oscillators (STNOs) are promising candidates for ultra-agile microwave sources or detectors. While usually STNOs behave as a monochromatic source, we report here clear bimodal simultaneous emission of incommensurate microwave oscillations in the frequency range of 6 to 10 gigahertz at femtowatt level power. These two tones correspond to two parametrically coupled eigenmodes with tunable splitting. The emission range is crucially sensitive to the change in hybridization of the eigenmodes of free and fixed layers, for instance, through a slight tilt of the applied magnetic field from the normal of the nanopillar. Our experimental findings are supported both analytically and by micromagnetic simulations, which ascribe the process to four-magnon scattering between a pair of radially symmetric magnon modes and a pair of magnon modes with opposite azimuthal index. Our findings pave the way for enhanced cognitive telecommunications and neuromorphic systems that use frequency multiplexing to improve communication performance.

5.
Sci Rep ; 13(1): 22471, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110512

ABSTRACT

Preprocessing is an essential task for the correct analysis of digital medical images. In particular, X-ray imaging might contain artifacts, low contrast, diffractions or intensity inhomogeneities. Recently, we have developed a procedure named PACE that is able to improve chest X-ray (CXR) images including the enforcement of clinical evaluation of pneumonia originated by COVID-19. At the clinical benchmark state of this tool, there have been found some peculiar conditions causing a reduction of details over large bright regions (as in ground-glass opacities and in pleural effusions in bedridden patients) and resulting in oversaturated areas. Here, we have significantly improved the overall performance of the original approach including the results in those specific cases by developing PACE2.0. It combines 2D image decomposition, non-local means denoising, gamma correction, and recursive algorithms to improve image quality. The tool has been evaluated using three metrics: contrast improvement index, information entropy, and effective measure of enhancement, resulting in an average increase of 35% in CII, 7.5% in ENT, 95.6% in EME and 13% in BRISQUE against original radiographies. Additionally, the enhanced images were fed to a pre-trained DenseNet-121 model for transfer learning, resulting in an increase in classification accuracy from 80 to 94% and recall from 89 to 97%, respectively. These improvements led to a potential enhancement of the interpretability of lesion detection in CXRs. PACE2.0 has the potential to become a valuable tool for clinical decision support and could help healthcare professionals detect pneumonia more accurately.


Subject(s)
COVID-19 , Pneumonia , Humans , X-Rays , Tomography, X-Ray Computed/methods , Thorax , COVID-19/diagnostic imaging , Pneumonia/diagnostic imaging , COVID-19 Testing
6.
Nano Lett ; 23(20): 9482-9490, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37818857

ABSTRACT

Racetrack memories with magnetic skyrmions have recently been proposed as a promising storage technology. To be appealing, several challenges must still be faced for the deterministic generation of skyrmions, their high-fidelity transfer, and accurate reading. Here, we realize the first proof-of-concept of a 9-bit skyrmion racetrack memory with all-electrical controllable functionalities implemented in the same device. The key ingredient is the generation of a tailored nonuniform distribution of magnetic anisotropy via laser irradiation in order to (i) create a well-defined skyrmion nucleation center, (ii) define the memory cells hosting the information coded as the presence/absence of skyrmions, and (iii) improve the signal-to-noise ratio of anomalous Hall resistance measurements. This work introduces a strategy to unify previous findings and predictions for the development of a generation of racetrack memories with robust control of skyrmion nucleation and position, as well as effective skyrmion electrical detection.

7.
Nanotechnology ; 34(49)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37669644

ABSTRACT

Probabilistic (p-) computing is a physics-based approach to addressing computational problems which are difficult to solve by conventional von Neumann computers. A key requirement for p-computing is the realization of fast, compact, and energy-efficient probabilistic bits. Stochastic magnetic tunnel junctions (MTJs) with low energy barriers, where the relative dwell time in each state is controlled by current, have been proposed as a candidate to implement p-bits. This approach presents challenges due to the need for precise control of a small energy barrier across large numbers of MTJs, and due to the need for an analog control signal. Here we demonstrate an alternative p-bit design based on perpendicular MTJs that uses the voltage-controlled magnetic anisotropy (VCMA) effect to create the random state of a p-bit on demand. The MTJs are stable (i.e. have large energy barriers) in the absence of voltage, and VCMA-induced dynamics are used to generate random numbers in less than 10 ns/bit. We then show a compact method of implementing p-bits by using VC-MTJs without a bias current. As a demonstration of the feasibility of the proposed p-bits and high quality of the generated random numbers, we solve up to 40 bit integer factorization problems using experimental bit-streams generated by VC-MTJs. Our proposal can impact the development of p-computers, both by supporting a fully spintronic implementation of a p-bit, and alternatively, by enabling true random number generation at low cost for ultralow-power and compact p-computers implemented in complementary metal-oxide semiconductor chips.

8.
Nanotechnology ; 34(37)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37267927

ABSTRACT

We have designed a passive spintronic diode based on a single skyrmion stabilized in a magnetic tunnel junction and studied its dynamics induced by voltage-controlled magnetic anisotropy (VCMA) and Dzyaloshinskii-Moriya interaction (VDMI). We have demonstrated that the sensitivity (rectified output voltage over input microwave power) with realistic physical parameters and geometry can be larger than 10 kV W-1which is one order of magnitude larger than diodes employing a uniform ferromagnetic state. Our numerical and analytical results on the VCMA and VDMI-driven resonant excitation of skyrmions beyond the linear regime reveal a frequency dependence on the amplitude and no efficient parametric resonance. Skyrmions with a smaller radius produced higher sensitivities, demonstrating the efficient scalability of skyrmion-based spintronic diodes. These results pave the way for designing passive ultra-sensitive and energy efficient skyrmion-based microwave detectors.


Subject(s)
Magnets , Microwaves , Anisotropy , Vibration
9.
Nat Commun ; 14(1): 2183, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069148

ABSTRACT

Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential reductions in size and power consumption. However, only a few concepts for spintronic amplifiers have been proposed, typically requiring complex device configurations or material stacks. Here, we demonstrate a spintronic amplifier based on two-terminal magnetic tunnel junctions (MTJs) produced with CMOS-compatible material stacks that have already been used for spin-transfer torque memories. We achieve a record gain (|S11 | > 2) for input power on the order of nW (<-40 dBm) at an appropriate choice of the bias field direction and amplitude. Based on micromagnetic simulations and experiments, we describe the fundamental aspects driving the amplification and show the key role of the co-existence in microwave emissions of a dynamic state of the MTJ excited by a dc current and the injection locking mode driven by the microwave input signal. Our work provides a way to develop a class of compact amplifiers that can impact the design of the next generation of spintronics-CMOS hybrid systems.

10.
Article in English | MEDLINE | ID: mdl-35830277

ABSTRACT

The development of skyrmionic devices requires a suitable tuning of material parameters to stabilize skyrmions and control their density. It has been demonstrated recently that different skyrmion types can be simultaneously stabilized at room temperature in heterostructures involving ferromagnets, ferrimagnets, and heavy metals, offering a new platform of coding binary information in the type of skyrmion instead of the presence/absence of skyrmions. Here, we tune the energy landscape of the two skyrmion types in such heterostructures by engineering the geometrical and material parameters of the individual layers. We find that a fine adjustment of the ferromagnetic layer thickness, and thus its magnetic anisotropy, allows the trilayer system to support either one of the skyrmion types or the coexistence of both and with varying densities.

11.
Nat Commun ; 12(1): 4555, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34315883

ABSTRACT

Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane structural asymmetry in the device, both of which can be difficult to implement in practical applications. Here, we report bias-field-free SOT switching in a single perpendicular CoTb layer with an engineered vertical composition gradient. The vertical structural inversion asymmetry induces strong intrinsic SOTs and a gradient-driven Dzyaloshinskii-Moriya interaction (g-DMI), which breaks the in-plane symmetry during the switching process. Micromagnetic simulations are in agreement with experimental results, and elucidate the role of g-DMI in the deterministic switching processes. This bias-field-free switching scheme for perpendicular ferrimagnets with g-DMI provides a strategy for efficient and compact SOT device design.

12.
Nat Commun ; 12(1): 3828, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34158511

ABSTRACT

There is accelerating interest in developing memory devices using antiferromagnetic (AFM) materials, motivated by the possibility for electrically controlling AFM order via spin-orbit torques, and its read-out via magnetoresistive effects. Recent studies have shown, however, that high current densities create non-magnetic contributions to resistive switching signals in AFM/heavy metal (AFM/HM) bilayers, complicating their interpretation. Here we introduce an experimental protocol to unambiguously distinguish current-induced magnetic and nonmagnetic switching signals in AFM/HM structures, and demonstrate it in IrMn3/Pt devices. A six-terminal double-cross device is constructed, with an IrMn3 pillar placed on one cross. The differential voltage is measured between the two crosses with and without IrMn3 after each switching attempt. For a wide range of current densities, reversible switching is observed only when write currents pass through the cross with the IrMn3 pillar, eliminating any possibility of non-magnetic switching artifacts. Micromagnetic simulations support our findings, indicating a complex domain-mediated switching process.

13.
Nat Commun ; 11(1): 6365, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33311480

ABSTRACT

Materials hosting magnetic skyrmions at room temperature could enable compact and energetically-efficient storage such as racetrack memories, where information is coded by the presence/absence of skyrmions forming a moving chain through the device. The skyrmion Hall effect leading to their annihilation at the racetrack edges can be suppressed, for example, by antiferromagnetically-coupled skyrmions. However, avoiding modifications of the inter-skyrmion distances remains challenging. As a solution, a chain of bits could also be encoded by two different solitons, such as a skyrmion and a chiral bobber, with the limitation that it has solely been realized in B20-type materials at low temperatures. Here, we demonstrate that a hybrid ferro/ferri/ferromagnetic multilayer system can host two distinct skyrmion phases at room temperature, namely tubular and partial skyrmions. Furthermore, the tubular skyrmion can be converted into a partial skyrmion. Such systems may serve as a platform for designing memory applications using distinct skyrmion types.

14.
Nanoscale ; 12(44): 22808-22816, 2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33174554

ABSTRACT

Two-dimensional (2D) magnetic materials with high perpendicular anisotropy, such as Fe3GeTe2, have the potential to build spintronic devices with better performance and lower power consumption. Here, we examine microwave emissions in Fe3GeTe2/Pt spin Hall nano-oscillators with different numbers of layers of Fe3GeTe2 using micromagnetic simulations. We predict that auto-oscillation with a frequency of >30 GHz can be driven by spin-orbit torque (SOT) and the frequency is tunable with current. Observing the dynamic behaviors of magnetization dynamic reveals that non-localized spin-wave propagates in Fe3GeTe2 with a spatially varied wavelength due to Joule heat and forms certain special bubble-like magnetic structure. Our results indicate SHNOs comprising a 2D magnetic material has the potential to develop future spintronic oscillator with low power consumption and high performance.

15.
ACS Appl Mater Interfaces ; 11(32): 29382-29387, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31342742

ABSTRACT

Broad-band radio frequency (RF) detection is of great interest for its potential applications in wireless charging and energy harvesting. Here, we demonstrate that the bandwidth of broad-band RF detection in spin-torque diodes based on magnetic tunnel junctions (MTJs) can be enhanced through engineering the interface perpendicular magnetic anisotropy (PMA) between the CoFeB free layer and the MgO tunnel barrier. An ultrawide RF detection bandwidth of over 3 GHz is observed in the MTJs, and the broad-band RF detection behavior can be modulated by tuning the free layer PMA. Furthermore, a wide RF detection bandwidth (about 1.8 GHz) can be realized even without any external bias field for free layers with a thickness of about 1.65 nm. Finally, the dependence of the broad-band RF detection bandwidth on external magnetic field and RF power is discussed. Our results pave the way for RF energy harvesting for future portable nanoelectronics.

16.
Adv Mater ; 31(14): e1807683, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30735264

ABSTRACT

Room temperature magnetic skyrmions in magnetic multilayers are considered as information carriers for future spintronic applications. Currently, a detailed understanding of the skyrmion stabilization mechanisms is still lacking in these systems. To gain more insight, it is first and foremost essential to determine the full real-space spin configuration. Here, two advanced X-ray techniques are applied, based on magnetic circular dichroism, to investigate the spin textures of skyrmions in [Ta/CoFeB/MgO]n multilayers. First, by using ptychography, a high-resolution diffraction imaging technique, the 2D out-of-plane spin profile of skyrmions with a spatial resolution of 10 nm is determined. Second, by performing circular dichroism in resonant elastic X-ray scattering, it is demonstrated that the chirality of the magnetic structure undergoes a depth-dependent evolution. This suggests that the skyrmion structure is a complex 3D structure rather than an identical planar texture throughout the layer stack. The analyses of the spin textures confirm the theoretical predictions that the dipole-dipole interactions together with the external magnetic field play an important role in stabilizing sub-100 nm diameter skyrmions and the hybrid structure of the skyrmion domain wall. This combined X-ray-based approach opens the door for in-depth studies of magnetic skyrmion systems, which allows for precise engineering of optimized skyrmion heterostructures.

17.
Sci Rep ; 8(1): 7180, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29739995

ABSTRACT

Recently discovered exotic magnetic configurations, namely magnetic solitons appearing in the presence of bulk or interfacial Dzyaloshinskii-Moriya Interaction (i-DMI), have excited scientists to explore their potential applications in emerging spintronic technologies such as race-track magnetic memory, spin logic, radio frequency nano-oscillators and sensors. Such studies are motivated by their foreseeable advantages over conventional micro-magnetic structures due to their small size, topological stability and easy spin-torque driven manipulation with much lower threshold current densities giving way to improved storage capacity, and faster operation with efficient use of energy. In this work, we show that in the presence of i-DMI in Pt/CoFeB/Ti multilayers by tuning the magnetic anisotropy (both in-plane and perpendicular-to-plane) via interface engineering and postproduction treatments, we can stabilize a variety of magnetic configurations such as Néel skyrmions, horseshoes and most importantly, the recently predicted isolated radial vortices at room temperature and under zero bias field. Especially, the radial vortex state with its absolute convergence to or divergence from a single point can potentially offer exciting new applications such as particle trapping/detrapping in addition to magnetoresistive memories with efficient switching, where the radial vortex state can act as a source of spin-polarized current with radial polarization.

18.
Magn Reson Imaging ; 35: 4-14, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27569370

ABSTRACT

PURPOSE: Investigation of the feasibility of the R2⁎ mapping techniques by using latest theoretical models corrected for confounding factors and optimized for signal to noise ratio. THEORY AND METHODS: The improvement of the performance of state of the art magnetic resonance imaging (MRI) relaxometry algorithms is challenging because of a non-negligible bias and still unresolved numerical instabilities. Here, R2⁎ mapping reconstructions, including complex fitting with multi-spectral fat-correction by using single-decay and double-decay formulation, are deeply studied in order to investigate and identify optimal configuration parameters and minimize the occurrence of numerical artifacts. The effects of echo number, echo spacing, and fat/water relaxation model type are evaluated through both simulated and in-vivo data. We also explore the stability and feasibility of the fat/water relaxation model by analyzing the impact of high percentage of fat infiltrations and local transverse relaxation differences among biological species. RESULTS: The main limits of the MRI relaxometry are the presence of bias and the occurrence of artifacts, which significantly affect its accuracy. Chemical-shift complex R2⁎-correct single-decay reconstructions exhibit a large bias in presence of a significant difference in the relaxation rates of fat and water and with fat concentration larger than 30%. We find that for fat-dominated tissues or in patients affected by extensive iron deposition, MRI reconstructions accounting for multi-exponential relaxation time provide accurate R2⁎ measurements and are less prone to numerical artifacts. CONCLUSIONS: Complex fitting and fat-correction with multi-exponential decay formulation outperforms the conventional single-decay approximation in various diagnostic scenarios. Although it still lacks of numerical stability, which requires model enhancement and support from spectroscopy, it offers promising perspectives for the development of relaxometry as a reliable tool to improve tissue characterization and monitoring of neuromuscular disorders.


Subject(s)
Adipose Tissue/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Neuromuscular Diseases/diagnostic imaging , Adipose Tissue/pathology , Artifacts , Computer Simulation , Feasibility Studies , Humans , Models, Theoretical , Muscle, Skeletal/pathology , Signal-To-Noise Ratio , Water
19.
Nat Commun ; 7: 11259, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27052973

ABSTRACT

Microwave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field. Here, we demonstrate nanoscale magnetic tunnel junction microwave detectors, exhibiting high-detection sensitivity of 75,400 mV mW(-1) at room temperature without any external bias fields, and for low-input power (micro-Watts or lower). This sensitivity is significantly larger than both state-of-the-art Schottky diode detectors and existing spintronic diodes. Micromagnetic simulations and measurements reveal the essential role of injection locking to achieve this sensitivity performance. This mechanism may provide a pathway to enable further performance improvement of spin-torque diode microwave detectors.

20.
Sci Rep ; 6: 25018, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27113392

ABSTRACT

The voltage-controlled magnetic anisotropy (VCMA) effect, which manifests itself as variation of anisotropy of a thin layer of a conductive ferromagnet on a dielectric substrate under the influence of an external electric voltage, can be used for the development of novel information storage and signal processing devices with low power consumption. Here it is demonstrated by micromagnetic simulations that the application of a microwave voltage to a nanosized VCMA gate in an ultrathin ferromagnetic nanowire results in the parametric excitation of a propagating spin wave, which could serve as a carrier of information. The frequency of the excited spin wave is twice smaller than the frequency of the applied voltage while its amplitude is limited by 2 mechanisms: (i) the so-called "phase mechanism" described by the Zakharov-L'vov-Starobinets "S-theory" and (ii) the saturation mechanism associated with the nonlinear frequency shift of the excited spin wave. The developed extension of the "S-theory", which takes into account the second limitation mechanism, allowed us to estimate theoretically the efficiency of the parametric excitation of spin waves by the VCMA effect.

SELECTION OF CITATIONS
SEARCH DETAIL
...