Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 10(7): 4297-4310, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38900847

ABSTRACT

Interfaces between AISI 304 stainless steel screws and cranial bone were investigated after long-term implantation lasting for 42 years. Samples containing the interface regions were analyzed using state-of-the-art analytical techniques including secondary ion mass, Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopies. Local samples for scanning transmission electron microscopy were cut from the interface regions using the focused ion beam technique. A chemical composition across the interface was recorded in length scales covering micrometric and nanometric resolutions and relevant differences were found between peri-implant and the distant cranial bone, indicating generally younger bone tissue in the peri-implant area. Furthermore, the energy dispersive spectroscopy revealed an 80 nm thick steel surface layer enriched by oxygen suggesting that the AISI 304 material undergoes a corrosion attack. The attack is associated with transport of metallic ions, namely, ferrous and ferric iron, into the bone layer adjacent to the implant. The results comply with an anticipated interplay between released iron ions and osteoclast proliferation. The interplay gives rise to an autocatalytic process in which the iron ions stimulate the osteoclast activity while a formation of fresh bone resorption sites boosts the corrosion process through interactions between acidic osteoclast extracellular compartments and the implant surface. The autocatalytic process thus may account for an accelerated turnover of the peri-implant bone.


Subject(s)
Bone Screws , Skull , Stainless Steel , Bone Screws/adverse effects , Stainless Steel/chemistry , Humans , Corrosion , Skull/pathology , Spectroscopy, Fourier Transform Infrared , Bone-Implant Interface , Surface Properties , Photoelectron Spectroscopy , Spectrum Analysis, Raman , Iron/chemistry
2.
Materials (Basel) ; 14(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34771771

ABSTRACT

Fatigue tests were performed on the AZ91 cast alloy to identify the mechanisms of the fatigue crack initiation. In different fatigue regions, different mechanisms were observed. In the low and high cycle fatigue regions, slip markings formation accompanied with Mg17Al12 particles cracking were observed. Slip markings act as the fatigue crack initiation sites. The size and number of slip markings decreased with decreased stress amplitude applied. When slip markings formation was suppressed due to low stress amplitude, particle cracking became more important and the cracks continued to grow through the particle/solid solution interface. The change of the fatigue crack initiation mechanisms led the S-N curve to shift to the higher number of cycles to the fracture, demonstrated by its stepwise character. A lower fatigue limit of 60 MPa was determined at 20 kHz for 2 × 109 cycles compared to the 80 MPa determined at 60 Hz for 1 × 107 cycles.

3.
J Mech Behav Biomed Mater ; 123: 104715, 2021 11.
Article in English | MEDLINE | ID: mdl-34365095

ABSTRACT

Complicated geometry in combination with surface treatment strongly deteriorates fatigue resistance of metallic dental implants. Mechanical properties of pure Ti grade 2, usually used for dental implant production, were shown to be significantly improved due to intensive grain refinement via Conform SPD. The increase of the tensile strength properties was accompanied by a significant increase in the fatigue resistance and fatigue endurance limit. However, the SLA treatment usually used for the implants' surface roughening, resulted in the fatigue properties and endurance limit decrease, while this effect was more pronounced for the ultrafine-grained comparing to the coarse-grained material when tested under tensile-tensile loading mode. The testing of the implants is usually provided under the bending mode. Even though different testing condition for the conventional specimens tests and implants testing was adopted, a numerical study revealed their comparable fatigue properties. The fatigue limit determined for the implants was 105% higher than the one for coarse-grained and only by 4 % lower than the one for ultrafine-grained Ti grade 2. Based on the obtained results, conventional specimens testing can be used for the prediction of the fatigue limit of the implants.


Subject(s)
Dental Implants , Titanium , Materials Testing , Surface Properties , Tensile Strength
4.
J Mech Behav Biomed Mater ; 111: 104016, 2020 11.
Article in English | MEDLINE | ID: mdl-32799132

ABSTRACT

Commercially pure Ti is a typical material for dental implants. Besides oral environmental effects, implants are seriously mechanically loaded during the lifetime. Mechanical resistance of coarse and ultra-fine grained Ti grade 4 was investigated. Significant grain size refinement resulting in the 65% increase of the proof stress is reported. The fatigue endurance limit increased from 523 MPa to 698 MPa due to grain refinement. The influence of sandblasting combined with acid etching on fatigue damage of both material states was analyzed. The surface treatment was proven as detrimental to the fatigue properties of both material states, due to reduction of the fatigue initiation stage. Nevertheless, the fatigue endurance limit of the surface-treated ultra-fine grained material remained higher than the fatigue endurance limit of the coarse-grained material without surface treatment. Reported results confirm better mechanical resistance of ultra-fine grained materials for dental implants in the comparison with coarse-grain one.


Subject(s)
Dental Implants , Titanium , Materials Testing , Surface Properties
5.
Materials (Basel) ; 13(6)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192141

ABSTRACT

The corrosion behavior of duplex Ni-P coatings deposited on AZ91 magnesium alloy was studied. The electroless deposition process of duplex Ni-P coating consisted in the preparation of low-phosphorus Ni-P coating (5.7 wt.% of P), which served as a bond coating and high-phosphorus Ni-P coating (11.5 wt.% of P) deposited on it. The duplex Ni-P coatings with the thickness of 25, 50, 75 and 100 µm were deposited on AZ91 magnesium alloy. The electrochemical corrosion behavior of coated AZ91 magnesium alloy was investigated by electrochemical impedance spectroscopy and potentiodynamic polarization method in 0.1 M NaCl. Obtained results showed a significant improvement in the corrosion resistance of coated specimens when compared to uncoated AZ91 magnesium alloy. From the results of the immersion tests in 3.5 wt.% NaCl, 10% solution of HCl and NaOH and 5% neutral salt spray, a noticeable increase in the corrosion resistance with the increasing thickness of the Ni-P coating was observed.

6.
Acta Biomater ; 66: 93-108, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29183850

ABSTRACT

The application of biodegradable magnesium-based materials in the biomedical field is highly restricted by their low fatigue strength and high corrosion rate in biological environments. Herein, we treated the surface of a biocompatible magnesium alloy AZ31 by severe shot peening in order to evaluate the potential of surface grain refinement to enhance this alloy's functionality in a biological environment. The AZ31 samples were studied in terms of micro/nanostructural, mechanical, and chemical characteristics in addition to cytocompatibility properties. The evolution of surface grain structure and surface morphology were investigated using optical, scanning and transmission electron microscopy. Surface roughness, wettability, and chemical composition, as well as in depth-microhardness and residual stress distribution, fatigue behaviour and corrosion resistance were investigated. Cytocompatibility tests with osteoblasts (bone forming cells) were performed using sample extracts. The results revealed for the first time that severe shot peening can significantly enhance mechanical properties of AZ31 without causing adverse effects on the growth of surrounding osteoblasts. The corrosion behavior, on the other hand, was not improved; nevertheless, removing the rough surface layer with a high density of crystallographic lattice defects, without removing the entire nanocrystallized layer, provided a good potential for improving corrosion characteristics after severe shot peening and thus, this method should be studied for a wide range of orthopedic applications in which biodegradable magnesium is used. STATEMENT OF SIGNIFICANCE: A major challenge for most commonly used metals for bio-implants is their non-biodegradability that necessitates revision surgery for implant retrieval when used as fixation plates, screws, etc. Magnesium is reported among the most biocompatible metals that resorb over time without adverse tissue reactions and is indispensable for many biochemical processes in human body. However, fast and uncontrolled degradation of magnesium alloys in the physiological environment in addition to their inadequate mechanical properties especially under repeated loading have limited their application in the biomedical field. The present study providesdata on the effect of a relatively simple surface nanocrystallziation method with high potential to tailor the mechanical and chemical behavior of magnesium based material while maintaining its cytocompatibility.


Subject(s)
Alloys/pharmacology , Materials Testing/methods , Nanostructures/chemistry , Osteoblasts/cytology , Cells, Cultured , Corrosion , Electrochemistry , Humans , Nanostructures/ultrastructure , Osteoblasts/drug effects , Surface Properties
7.
Materials (Basel) ; 9(11)2016 Oct 28.
Article in English | MEDLINE | ID: mdl-28774000

ABSTRACT

New Mg-3Zn-2Ca magnesium alloy was prepared using different processing techniques: gravity casting as well as squeeze casting in liquid and semisolid states. Materials were further thermally treated; thermal treatment of the gravity cast alloy was additionally combined with the equal channel angular pressing (ECAP). Alloy processed by the squeeze casting in liquid as well as in semisolid state exhibit improved plasticity; the ECAP processing positively influenced both the tensile and compressive characteristics of the alloy. Applied heat treatment influenced the distribution and chemical composition of present intermetallic phases. Influence of particular processing techniques, heat treatment, and intermetallic phase distribution is thoroughly discussed in relation to mechanical behavior of presented alloys.

8.
Materials (Basel) ; 9(11)2016 Nov 15.
Article in English | MEDLINE | ID: mdl-28774046

ABSTRACT

Linear polarization is a potentiodynamic method used for electrochemical characterization of materials. Obtained values of corrosion potential and corrosion current density offer information about material behavior in corrosion environments from the thermodynamic and kinetic points of view, respectively. The present study offers a comparison of applications of the linear polarization method (from -100 mV to +200 mV vs. EOCP), the cathodic polarization of the specimen (-100 mV vs. EOCP), and the anodic polarization of the specimen (+100 mV vs. EOCP), and a discussion of the differences in the obtained values of the electrochemical characteristics of cast AZ91 magnesium alloy. The corrosion current density obtained by cathodic polarization was similar to the corrosion current density obtained by linear polarization, while a lower value was obtained by anodic polarization. Signs of corrosion attack were observed only in the case of linear polarization including cathodic and anodic polarization of the specimen.

9.
J Mech Behav Biomed Mater ; 42: 219-28, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25498295

ABSTRACT

Fatigue properties of cast AZ91 magnesium alloy processed by severe plastic deformation were investigated and compared with the properties of the initial cast state. The severe plastic deformation was carried out by equal channel angular pressing (ECAP). The ECAP treatment resulted in a bimodal structure. The bimodality consists in a coexistence of fine grained areas with higher content of Mg17Al12 particles and areas exhibiting larger grains and lower density of Mg17Al12 particles. Improvement of the basic mechanical properties of AZ91 (yield stress, tensile strength and ductility) by ECAP was significant. Also the improvement of the fatigue life in the low-cycle fatigue region was substantial. However the improvement of the fatigue strength in the high-cycle fatigue region was found to be negligible. The endurance limit based on 10(7) cycles for the cast alloy was 80 MPa and for the alloy processed by ECAP 85 MPa. The cyclic plastic response in both states was qualitatively similar; initial softening was followed by a long cyclic hardening. Fatigue cracks in cast alloy initiate in cyclic slip bands which were formed in areas of solid solution. In the case of severe plastic deformed material with bimodal structure two substantially different mechanisms of crack initiation were observed. Crack initiation in slip bands was a preferred process in the areas with large grains whereas the grain boundaries cracking was a characteristic mechanism in the fine grained regions.


Subject(s)
Alloys/chemistry , Magnesium/chemistry , Materials Testing , Stress, Mechanical , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...