Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Surg ; 11: 1393898, 2024.
Article in English | MEDLINE | ID: mdl-38783862

ABSTRACT

Surgeons are skilled at making complex decisions over invasive procedures that can save lives and alleviate pain and avoid complications in patients. The knowledge to make these decisions is accumulated over years of schooling and practice. Their experience is in turn shared with others, also via peer-reviewed articles, which get published in larger and larger amounts every year. In this work, we review the literature related to the use of Artificial Intelligence (AI) in surgery. We focus on what is currently available and what is likely to come in the near future in both clinical care and research. We show that AI has the potential to be a key tool to elevate the effectiveness of training and decision-making in surgery and the discovery of relevant and valid scientific knowledge in the surgical domain. We also address concerns about AI technology, including the inability for users to interpret algorithms as well as incorrect predictions. A better understanding of AI will allow surgeons to use new tools wisely for the benefit of their patients.

2.
J Phys Condens Matter ; 27(19): 194130, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25923880

ABSTRACT

We consider two schematic models of glasses subjected to oscillatory shear deformation, motivated by the observations, in computer simulations of a model glass, of a nonequilibrium transition from a localized to a diffusive regime as the shear amplitude is increased, and of persistent memory effects in the localized regime. The first of these schematic models is the NK model, a spin model with disordered multi-spin interactions previously studied as a model for sheared amorphous solids. The second model, a transition matrix model, is an abstract formulation of the manner in which occupancy of local energy minima evolves under oscillatory deformation cycles. In both of these models, we find a behavior similar to that of an atomic model glass studied earlier. We discuss possible further extensions of the approaches outlined.

3.
Phys Rev Lett ; 112(2): 025702, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24484027

ABSTRACT

We show that memory can be encoded in a model amorphous solid subjected to athermal oscillatory shear deformations, and in an analogous spin model with disordered interactions, sharing the feature of a deformable energy landscape. When these systems are subjected to oscillatory shear deformation, they retain memory of the deformation amplitude imposed in the training phase, when the amplitude is below a "localization" threshold. Remarkably, multiple persistent memories can be stored using such an athermal, noise-free, protocol. The possibility of such memory is shown to be linked to the presence of plastic deformations and associated limit cycles traversed by the system, which exhibit avalanche statistics also seen in related contexts.

4.
Article in English | MEDLINE | ID: mdl-24032763

ABSTRACT

We report computer simulations of oscillatory athermal quasistatic shear deformation of dense amorphous samples of a three-dimensional model glass former. A dynamical transition is observed as the amplitude of the deformation is varied: For large values of the amplitude the system exhibits diffusive behavior and loss of memory of the initial conditions, whereas localization is observed for small amplitudes. Our results suggest that the same kind of transition found in driven colloidal systems is present in the case of amorphous solids (e.g., metallic glasses). The onset of the transition is shown to be related to the onset of energy dissipation. Shear banding is observed for large system sizes, without, however, affecting qualitative aspects of the transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...