Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(47): 104633-104639, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37707725

ABSTRACT

The identification of the degradation products in objects of cultural significance, including musical instruments (e.g., a piano), is a key issue for the preservation and valorisation processes of cultural heritage. The aim of this study is to characterize the degradation products of lead weights from an important Steinway & sons piano using a multi-analytical approach that includes ionic chromatography (IC), X-ray diffraction (XRD) and Fourier transform-infrared (FTIR) spectroscopy analyses. These techniques allowed us to identify hydrocerussite as the main degradation product on the superficial layer of lead weights, followed by lead acetate and formate. Moreover, accelerated corrosion experiments in closed environments were performed under acetic and formic acid atmospheres to evaluate the development of lead acetate and formate over time. Exposure of lead weights to formic and acetic acid vapours leads to the prevalent formation of basic lead formate, which promotes the formation of hydrocerussite. These results can help to limit the degradation of these piano components and consequently preserve the sound of the piano itself.


Subject(s)
Lead , Nuclear Family , Acetic Acid , Formates
2.
J Environ Manage ; 340: 117950, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37094386

ABSTRACT

Landfill leachate (LL) represents a very complex effluent difficult to treat and to manage which usually requires a chemical pre-treatment. In this study, response surface methodology (RSM) was used to identify the optimum operating conditions of the Fenton process as a pre-treatment of LL in order to reduce the high organic content and simultaneously optimize the BOD5:TN:TP ratio. The dosages of Fenton process reagents, namely Fe2+ and H2O2, were used as variables for the implementation of RSM. Chemical oxygen demand (COD), five-days biochemical oxygen demand (BOD5), total nitrogen (TN), total phosphorus (TP) removals (and simultaneously BOD5:TN:TP ratio), sludge-to-iron ratio (SIR) and organic removal-to-sludge ratio (ORSR) were selected as target responses. This approach considered the SIR and ORSR parameters which are a useful tool for assessing sludge formation during the process along with organic matter removal. The variables (H2O2 and Fe2+ concentrations) significantly affected the responses, as the role of oxidation mechanism is dominant with respect to coagulation one. The pH for the process was fixed to 2.8 while the treatment time was set to 2 h. The optimum operational conditions obtained by perturbation and 3D surface plot, were found to be 4262 mg/L and 5104 mg/L for Fe2+ and H2O2, respectively (H2O2/Fe2+ molar ratio = 2) with COD, BOD5, TN and TP removals of 70%, 67%, 84% and 96% respectively, while SIR and ORSR final values were 1.15 L/mol and 33.79 g/L respectively, in accordance with models-predicted values. Moreover, the initial unbalanced BOD5:TN:TP ratio (9:1:1) was significantly improved (100:6:1), making the effluent suitable for a subsequent biological treatment. The investigated approach allowed to optimize the removal of organic load and nutrients as well as to minimize the sludge formation in Fenton process, providing a useful tool for the operation and management of LL pre-treatment.


Subject(s)
Sewage , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxidation-Reduction
3.
Environ Sci Pollut Res Int ; 29(20): 29385-29390, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33389576

ABSTRACT

In this study, we evaluated indoor air quality to highlight the effects of environmental pollution in the field of cultural heritage. In particular, two important archeological places in the old part of the city of Salerno, Italy, were analyzed: Fruscione Palace and S. Pietro a Corte. The work focused on the influence of tourists on environmental pollution correlated to indoor air quality during some social and cultural events. Moreover, we focused on the possible use of the carbon isotopic composition of CO2 as a tool for environmental studies in the field of cultural heritage. The results showed a good relationship between the isotopic composition of CO2 and the variation of pollutants concentration in the air, demonstrating that it is a valid tool and non-invasive marker to monitor environmental pollution of museums and cultural heritage sites.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Carbon Dioxide , Environmental Monitoring/methods
4.
Sci Total Environ ; 767: 144395, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33434835

ABSTRACT

In this work permaleic acid (PMA) was investigated as possible disinfecting agent and compared to peracetic acid (PAA) in real tap water and wastewater. Preliminary tests in lysogeny broth (LB) were also performed. PMA was synthesized from maleic anhydride and hydrogen peroxide and, for the first time, its antimicrobial activity was evaluated with respect to the growth inhibition of E. coli. The effect of the pH and bivalent ions, typically occurring in real water matrices (namely, Mg2+ and Ca2+), was also investigated. pKa values for PMA were calculated for the first time by DFT calculations. The concentration of bivalent ions strongly affected disinfection efficiency with PMA (Ca2+=0.33 mgL-1 and Mg2+=0.35 mgL-1: 100% E. coli reduction > log 5; Ca2+=13.3 mg L-1 and Mg2+=25.6 mg L-1: E. coli reduction < log 1, after 60 min), and such results were supported by DFT modelling outcomes (pKa2 of PMA 7.3) and disinfection tests in presence of EDTA chelating agent. More alkaline pH conditions drastically decreased PMA disinfection (pH = 5: > log 5 E.coli reduction; pH = 9: < log 1 E.coli reduction, after 60 min). PMA disinfection efficiency is strongly affected by the target water quality, the concentration of metal bivalent ions and the initial pH.


Subject(s)
Disinfectants , Water Purification , Disinfection , Escherichia coli , Peracetic Acid , Wastewater
5.
Water Res ; 184: 116194, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32711221

ABSTRACT

The efficiency of a new Advanced Oxidation Process (AOP), namely the photo Fenton like process UV-C/H2O2/IDS-Cu, in removing determinants of antibiotic resistance and pathogenic bacteria was compared to a consolidated AOP (namely UV-C/H2O2) in a secondary treated municipal WasteWater (WW). A reductionist experimental laboratory-based approach was applied on real WW and the parameters were collected by an alternative integrated approach using (i) flow cytometry to enumerate bacteria and test for the fitness of the bacterial communities and (ii) molecular analyses to define the community composition (16S rRNA amplicon sequencing) and the abundances of Antibiotic Resistance Genes (ARGs) and of the class 1 integron (intI1 gene) (by quantitative PCR). The same approach was applied also to post-treatment regrowth tests (24 h) to define the potential persistence of the tested parameters. These experiments were performed in both, human pathogens favorable conditions (HPC, in rich medium and 37°C) and in environmental mimicking conditions (EMC, original WW and 20°C). UV-C/H2O2/IDS-Cu process resulted to be more effective than the UV-C/H2O2in inactivating bacterial cells in the EMC post-treatment regrowth experiments. Both AOPs were efficiently abating potential human pathogenic bacteria and ARGs in the HPC regrowth experiments, although this trend could not be detected in the measurements taken immediately after the disinfection. In comparison with the UV-C/H2O2, the UV-C/H2O2/IDS-Cu process did not apparently offer significant improvements in the abatement of the tested parameters in the WW effluent but, by evaluating the results of the regrowth experiments it was possible to extrapolate more complex trends, suggesting contrasting efficiencies visible only after a few hours. This study offers a detailed view on the abatement efficiency of microbiological/genetic parameters for the UV-C/H2O2/IDS-Cu process, calling for technical adjustments for this very promising technology. At the same time, our results clearly demonstrated the inadequacy of currently applied methodologies in the evaluation of specific parameters (e.g. determinants of antibiotic resistance and pathogenic bacteria) in WW.


Subject(s)
Wastewater , Water Purification , Anti-Bacterial Agents/pharmacology , Flow Cytometry , Humans , Hydrogen Peroxide , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Ultraviolet Rays
6.
Water Res ; 167: 114895, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31553931

ABSTRACT

We carry out a mesocosms experiment to assess the impact of high-quality treated wastewater intended for agricultural reuse (HQWR) on freshwater bacteria seldom exposed to anthropogenic pollution. Effects were assessed by comparing the abundance and composition of bacterial communities as well as their resistance profile under control (source water from an unpolluted lake) and treatment conditions (source water mixed 1:1 with HQWR, with and without 5 µg L-1 of cefotaxime). We investigated the effect of the different conditions on the abundance of genes encoding resistance to ß-lactams and carbapenems (blaTEM, blaCTX-M, blaOXA, and blaKPC), fluoroquinolones (qnrS), tetracyclines (tetA), sulfonamides (sul2), macrolides (ermB), arsenic and cadmium (arsB and czcA, respectively), and on the gene encoding the Class 1 integron integrase (intI1). Bacterial communities exposed to HQWR showed a significant higher abundance of tetA, arsB, czcA, and intI1 genes, whereas those exposed to Cefotaxime-amended HQWR did not. Genes conferring resistance to carbapenems, ß-lactams, fluoroquinolones, and macrolides were below detection limit in all treatments. Besides, the higher availability of nutrients under treatment conditions favored bacterial growth in comparison to those exposed to control conditions. Particularly, Acinetobacter spp. and Pseudomonas spp. were significantly enriched after 22 days of treatment exposure. The presence of cefotaxime (a third generation cephalosporine) in the feeding medium caused an enrichment of bacterial communities in sequences affiliated to Acinetobacter thus suggesting that these resistant forms may possess resistance genes other than those studied here (blaCTX-M, blaOXA, and blaKPC). Although derived from a mesocosm experiment in continuous cultures, our results call attention to the need of refined regulations regarding the use of reclaimed water in agriculture since even high-quality treated wastewater may lead to undesired effects on receiving bacterial communities in terms of composition and dissemination of antibiotic resistance genes.


Subject(s)
Microbiota , Wastewater , Anti-Bacterial Agents , Genes, Bacterial , Integrases , Integrons
7.
J Hazard Mater ; 378: 120737, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31202058

ABSTRACT

Solar photo-Fenton process in raceway pond reactors was investigated at neutral pH as a sustainable tertiary treatment of real urban wastewater. In particular, the effect on antibiotic resistance determinants was evaluated. An effective inactivation of different wild bacterial populations was achieved considering total and cefotaxime resistant bacteria. The detection limit (1 CFU mL-1) was achieved in the range 80-100 min (5.4-6.7 kJ L-1 of cumulative solar energy required) for Total Coliforms (TC) (40-60 min for resistant TC, 4.3-5.2 kJ L-1), 60-80 min (4.5-5.4 kJ L-1) for Escherichia coli (E. coli) (40 min for resistant E. coli, 4.1-4.7 kJ L-1) and 40-60 min (3.9-4.5 kJ L-1) for Enterococcus sp. (Entero) (30-40 min for resistant Entero, 3.2-3.8 kJ L-1) with 20 mg L-1 Fe2+ and 50 mg L-1 H2O2. Under these mild oxidation conditions, 7 out of the 10 detected antibiotics were effectively removed (60-100%). As the removal of antibiotic resistance genes (ARGs) is of concern, no conclusive results were obtained, as sulfonamide resistance gene was reduced to some extent (relative abundance <1), meanwhile class 1 integron intI1 and ß-lactam resistance genes were not affected. Accordingly, more research and likely more intensive oxidative conditions are needed for an efficient ARGs removal.


Subject(s)
Drug Resistance, Microbial/genetics , Hydrogen Peroxide , Iron , Solar Energy , Waste Disposal, Fluid/methods , Wastewater , Bacterial Load , DNA, Bacterial/genetics , Genes, Bacterial , Hydrogen-Ion Concentration , Sunlight , Water Microbiology
8.
Water Res ; 158: 72-81, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31015144

ABSTRACT

Treated wastewater discharged into the environment acts as a disturbance of the natural microbial communities in terms of taxonomic composition and of functional gene pool, including antibiotic resistance genes. We tested whether stochastic and heterogeneous site-specific trajectories or generalities, potentially driven by deterministic processes, control the fate of allochthonous bacteria from anthropogenic sources and the persistence of their functional traits in freshwater. Finding generalities would allow the identification of wastewater treatments that could be effective in abating determinants of antibiotic resistance. We analysed the short-term response of native bacterial communities in waters exposed to the disturbance of wastewater at different dilutions, using a metagenomic approach that revealed both microbial community composition and the scope and abundance of the resistome that can pose indirect risks to human health. We found that the taxonomic composition of the communities after the disturbance was driven by case-specific stochastic processes, whereas the resistome had a deterministic trajectory, rapidly stabilising its functional traits with higher proportions of wastewater effluents, regardless of differences in taxonomic composition, richness of antibiotic resistance genes and of bacterial taxa, phenotypic features of the bacterial communities, and type of wastewater treatment. The observed deterministic proliferation of resistomes in freshwater bodies receiving wastewater effluents, suggests that this process may contribute to the global propagation of antibiotic resistance, and thus calls for new legislations promoting alternative tertiary treatments for the wastewater reuse, and targeting bacterial functional traits and not only bacterial abundances.


Subject(s)
Anti-Bacterial Agents , Wastewater , Drug Resistance, Microbial , Fresh Water , Genes, Bacterial , Humans
9.
Sci Total Environ ; 646: 1204-1210, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30235606

ABSTRACT

Urban Wastewater Treatment Plants (UWTPs) treating mixed urban sewage and industrial wastewater are among the major hotspots for the spread of Antibiotic Resistance Genes (ARGs) into the environment. This study addresses the impact of the wastewater origin on ARG dynamics in a full-scale UWTP (15,000 Population Equivalent, PE) by operating the plant with and without industrial wastewater. Composite samples (4 L) from different treatment points were characterized for their chemical composition, bacterial abundance and for the abundance of four resistance genes against tetracycline, sulfonamides, erythromycin, and quinolones (tetA, sul2, ermB, and qnrS), and of the class 1 integrons (intI1). Although the chemical composition of the outflow significantly differed when the plant operated with or without industrial wastewater, the system efficiency in the removal of bacterial cells, ARGs, and intI1 was constant. The final disinfection by peracetic acid (PAA) did not affect the removal of ARGs, independently of the wastewater origin and the chemical characteristics of the inflows. Our results demonstrated that a well-functioning small size UWTP could treat a significant amount of industrial wastewater mixed in the urban sewage without affecting the overall ARGs and class 1 integrons released into the environment.


Subject(s)
Drug Resistance, Microbial/genetics , Genes, Bacterial , Waste Disposal, Fluid/methods , Wastewater/microbiology , Anti-Bacterial Agents , Environmental Monitoring , Integrons
10.
Water Res ; 146: 206-215, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30265892

ABSTRACT

Photo-Fenton process is among the most effective advanced oxidation processes (AOPs) in urban wastewater treatment and disinfection, but its application as tertiary treatment at full scale has not been a feasible/attractive option so far because optimum conditions are typically achieved under acidic pH. In this work a new photo Fenton like process (UV-C/H2O2/IDS-Cu) using iminodisuccinic acid (IDS)-Cu complex as catalyst, was compared to other processes (UV-C/H2O2/Cu, UV-C/H2O2/Fe, H2O2 and UV-C) in urban wastewater disinfection. Since this is the first time that IDS-Cu complex was isolated and used as catalyst, preliminary tests to evaluate the mineralization of a model compound (phenol, 25 mg L-1 initial concentration) in water by UV-C/H2O2/IDS-Cu were carried out. Almost complete mineralization of phenol (95%) was observed after 60 min treatment, being the process more effective than all other investigated AOPs (Fenton and photo-Fenton processes). This process was also proven to be more effective in the inactivation of E. coli (complete inactivation (3.5 log units) in 10 min) at natural pH (7.8 ±â€¯0.5) in real wastewater, than the other processes investigated. Unlike of what observed for E. coli inactivation, the investigated processes only partially inactivated total bacterial population (from 18% for UV-C to 43% for UV-C/H2O2/Cu), according to flow cytometry measurements. In particular, Cu based photo-Fenton processes resulted in the higher percentage of inactivated total cells, thus being consistent with the results of E. coli inactivation. It is worthy to note that, as H2O2 was decreased, UV-C/H2O2/Cu-IDS was more effective than UV-C/H2O2/Cu process. Moreover, the formation of small and large clusters decreased in the presence of Cu and Cu-IDS complex, and process efficiency improved accordingly; these results show that Cu based AOPs can more effectively disaggregate clusters, thus making disinfection process more effective than Fe based AOPs.


Subject(s)
Wastewater , Water Purification , Amino Acids , Disinfection , Escherichia coli , Hydrogen Peroxide , Hydrogen-Ion Concentration , Iron , Oxidation-Reduction , Succinates , Ultraviolet Rays
11.
J Environ Sci (China) ; 69: 95-104, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29941273

ABSTRACT

The fate of indigenous surface-water and wastewater antibiotic resistant bacteria in a mild slope stream simulated through a hydraulic channel was investigated in outdoor experiments. The effect of (i) natural (dark) decay, (ii) sunlight, (iii) cloudy cover, (iv) adsorption to the sediment, (v) hydraulic conditions, (vi) discharge of urban wastewater treatment plant (UWTP) effluent and (vii) bacterial species (presumptive Escherichia coli and enterococci) was evaluated. Half-life time (T1/2) of E. coli under sunlight was in the range 6.48-27.7min (initial bacterial concentration of 105CFU/mL) depending on hydraulic and sunlight conditions. E. coli inactivation was quite similar in sunny and cloudy day experiments in the early 2hr, despite of the light intensity gradient was in the range of 15-59W/m2; but subsequently the inactivation rate decreased in the cloudy day experiment (T1/2=23.0min) compared to sunny day (T1/2=17.4min). The adsorption of bacterial cells to the sediment (biofilm) increased in the first hour and then was quite stable for the remaining experimental time. Finally, when the discharge of an UWTP effluent in the stream was simulated, the proportion of indigenous antibiotic resistant E. coli and enterococci was found to increase as the exposure time increased, thus showing a higher resistance to solar inactivation compared to the respective total populations.


Subject(s)
Bacteria , Drug Resistance, Bacterial/genetics , Wastewater/microbiology , Biofilms , Enterococcus , Escherichia coli , Rivers/microbiology , Water Microbiology
12.
Environ Sci Pollut Res Int ; 24(2): 1871-1879, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27796997

ABSTRACT

Salmonellosis is one of the most common causes of foodborne bacterial human disease worldwide, and the emergence of multidrug-resistant (MDR) strains of Salmonella enterica serovar Typhimurium (S. typhimurium) was associated to the incidence of invasive salmonellosis. The objective of the present work was to investigate the effects of the TiO2 photocatalysis process in terms of both bacteria inactivation and the emergence of mutants, on S. typhimurium TA102 water suspensions. The TiO2 photocatalysis was compared with a conventional disinfection process such as UV-C radiation. In spite of the faster bacterial inactivation obtained in UV-C disinfection experiments (45, 15, and 10 min for total inactivation for initial cell density 109, 108, and 107 CFU mL-1, respectively), photocatalytic disinfection (60, 30, and 15 min) was more energy efficient because of a lower energy requirement (2-20 mWs cm-2) compared to the UV-C disinfection process (5-30 mWs cm-2). During the photocatalytic experiments, the mutation frequency increased up to 1648-fold compared to background level for a 108 CFU mL-1 initial bacterial density, and mutants were inactivated after 1-10-min treatment, depending on initial bacterial cell density. In UV-C disinfection experiments, the mutation frequency increased up to 2181-fold for a 108 CFU mL-1 initial bacterial cell density, and UV-C doses in the range of 0.5-4.8 mWs cm-2 were necessary to decrease mutation frequency. In conclusion, both disinfection processes were effective in the inactivation of S. typhimurium cells, and mutants released into the environment can be avoided if cells are effectively inactivated.


Subject(s)
Disinfection , Mutagenesis , Salmonella typhimurium/drug effects , Salmonella typhimurium/radiation effects , Titanium/pharmacology , Ultraviolet Rays , Disinfection/methods , Mutagenesis/drug effects , Mutagenesis/radiation effects
13.
J Photochem Photobiol B ; 148: 43-50, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25874661

ABSTRACT

Solar disinfection and solar-driven advanced oxidation processes (AOPs) (namely H2O2/sunlight, TiO2/sunlight, H2O2/TiO2/sunlight, solar photo-Fenton) were evaluated in the inactivation of indigenous antibiotic-resistant bacteria (ARB) in real urban wastewater. A multidrug resistant (MDR) Escherichia coli strain isolated from the effluent of the biological process of an urban wastewater treatment plant was the target ARB. The higher inactivation rates (residual density under detection limit, 2 CFUm L(-1)) were achieved with H2O2/TiO2/sunlight (cumulative energy per unit of volume (QUV) in the range 3-5 kJ L(-1), depending on H2O2/TiO2 ratio) and H2O2/sunlight (QUV of 8 kJ L(-1)) processes. All investigated processes did not affect antibiotic resistance of survived colonies. Moreover, H2O2/sunlight was compared with conventional chlorination process to evaluate bacterial regrowth potential and particularly the proportion of indigenous MDR E. coli with respect to total indigenous E. coli population. Chlorination (1.0 mg Cl2 L(-1)) was more effective than H2O2/sunlight (50 mg H2O2 L(-1)) to achieve total inactivation of MDR E. coli (15 min Vs 90 min) but less effective in controlling their regrowth (24 h Vs 48 h). Interestingly, the percentage of MDR E. coli in H2O2/sunlight treated samples decreased as incubation time increased; the opposite was observed for chlorinated samples.


Subject(s)
Disinfection/methods , Hydrogen Peroxide/chemistry , Iron/chemistry , Sunlight , Wastewater/microbiology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/radiation effects , Escherichia coli/drug effects , Escherichia coli/radiation effects , Halogenation , Titanium/chemistry , Waste Disposal, Fluid
14.
Chemosphere ; 92(2): 171-6, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23591136

ABSTRACT

Urban wastewater treatment plant (UWWTP) effluents are among the possible sources of antibiotics and antibiotic-resistant bacteria (ARB) spread into the environment. In this work, the effect of UV radiation on antibiotic-resistant Escherichia coli (E. coli) strains was compared with that of chlorination process. Under the investigated conditions, UV disinfection process resulted in a total inactivation after 60min of irradiation (1.25×10(4)µWscm(-2)) compared to 120min chlorine contact time (initial chlorine dose of 2mgL(-1)). Moreover, no change in E. coli strains' resistance to amoxicillin (AMX) (minimum inhibiting concentration (MIC)>256mgL(-1)) and sulfamethoxazole (SMZ) (MIC>1024mgL(-1)) could be observed after UV treatment, while the treatment affected resistance of the lower resistance strain to ciprofloxacin (CPX) (MIC decreased by 33% and 50% after 60 and 120min, respectively). Contrarily, chlorination process did not affect antibiotic resistance of the investigated E. coli strains. Finally, the effect of UV radiation on the mixture of three antibiotics was also investigated and photodegradation data fit quite well pseudo first order kinetic models with t1/2 values of 14, 20 and 25min for CPX, AMX and SMZ, respectively. According to these results, conventional disinfection processes may not be effective in the inactivation of ARB, and the simultaneous release of ARB and antibiotics at sub-lethal concentrations into UWWTP effluent may promote the development of resistance among bacteria in receiving water.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Escherichia coli/drug effects , Escherichia coli/radiation effects , Ultraviolet Rays , Water Purification/methods , Amoxicillin/pharmacology , Ciprofloxacin/pharmacology , Disinfection/methods , Halogenation , Photolysis , Sulfamethoxazole/pharmacology , Waste Disposal, Fluid/methods , Wastewater , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...