Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Phys ; 119(18)2016 05 14.
Article in English | MEDLINE | ID: mdl-27746508

ABSTRACT

Semiconductor materials that can be doped both n-type and p-type are desirable for diode-based applications and transistor technology. Copper nitride (Cu3N) is a metastable semiconductor with a solar-relevant bandgap that has been reported to exhibit bipolar doping behavior. However, deeper understanding and better control of the mechanism behind this behavior in Cu3N is currently lacking in the literature. In this work, we use combinatorial growth with a temperature gradient to demonstrate both conduction types of phase-pure, sputter-deposited Cu3N thin films. Room temperature Hall effect and Seebeck effect measurements show n-type Cu3N with an electron density of 1017 cm-3 for low growth temperature (≈ 35 °C) and p-type with a hole density between 1015 cm-3 and 1016 cm-3 for elevated growth temperatures (50 °C to 120 °C). Mobility for both types of Cu3N was ≈ 0.1 cm2/Vs to 1 cm2/V. Additionally, temperature-dependent Hall effect measurements indicate that ionized defects are an important scattering mechanism in p-type films. By combining X-ray absorption spectroscopy and first-principles defect theory, we determined that VCu defects form preferentially in p-type Cu3N while Cui defects form preferentially in n-type Cu3N; suggesting that Cu3N is a compensated semiconductor with conductivity type resulting from a balance between donor and acceptor defects. Based on these theoretical and experimental results, we propose a kinetic defect formation mechanism for bipolar doping in Cu3N, that is also supported by positron annihilation experiments. Overall, the results of this work highlight the importance of kinetic processes in the defect physics of metastable materials, and provide a framework that can be applied when considering the properties of such materials in general.

2.
J Phys Chem Lett ; 5(7): 1117-25, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-26274458

ABSTRACT

Defect tolerance is the tendency of a semiconductor to keep its properties despite the presence of crystallographic defects. Scientific understanding of the origin of defect tolerance is currently missing. Here we show that semiconductors with antibonding states at the top of the valence band are likely to be tolerant to defects. Theoretical calculations demonstrate that Cu3N with antibonding valence band maximum has shallow intrinsic defects and no surface states, in contrast to GaN with bonding valence band maximum. Experimental measurements indicate shallow native donors and acceptors in Cu3N thin films, leading to 10(16)-10(17) cm(-3) doping with either electrons or holes depending on the growth conditions. The experimentally measured bipolar doping and the solar-matched optical absorption onset (1.4 eV) make Cu3N a promising candidate absorber for photovoltaic and photoelectrochemical solar cells, despite the calculated indirect fundamental band gap (1.0 eV). These conclusions can be extended to other materials with antibonding character of the valence band, defining a class of defect-tolerant semiconductors for solar energy conversion applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...