Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 15(4): e2000862, 2017 04.
Article in English | MEDLINE | ID: mdl-28441450

ABSTRACT

Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.


Subject(s)
Acetobacter/physiology , Amino Acids, Essential/metabolism , Drosophila melanogaster/microbiology , Feeding Behavior , Gastrointestinal Microbiome , Lactobacillus/physiology , Symbiosis , Acetobacter/genetics , Acetobacter/growth & development , Acetobacteraceae/genetics , Acetobacteraceae/growth & development , Acetobacteraceae/physiology , Amino Acids, Essential/administration & dosage , Amino Acids, Essential/analysis , Amino Acids, Essential/deficiency , Animals , Animals, Genetically Modified , Appetite Regulation , Behavior, Animal , Complex Mixtures/administration & dosage , Complex Mixtures/chemistry , Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Enterococcus faecalis/genetics , Enterococcus faecalis/growth & development , Enterococcus faecalis/physiology , Female , Food Preferences , Gene Knockout Techniques , Host-Parasite Interactions , Lactobacillus/genetics , Lactobacillus/growth & development , Oviposition , Species Specificity , Yeast, Dried/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...