Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Small ; : e2307232, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072768

ABSTRACT

This work demonstrates the use of 2D materials (2DMs) as identification tags by exploiting their unique shape. Electrochemical exfoliation enables the production of large quantities of optically accessible 2DMs with diverse morphology and large lateral sizes up to 20 µm. Image processing techniques are used to facilitate shape identification and matching within a dataset of 500 unique nanosheets. Rotational and translation invariant shape matching with no false positive matches between over 100 000 unique shape pairings is shown. The approach enables individual nanosheets to be deposited onto products, such as packaging of luxury goods, pharmaceuticals, banknotes, etc., as a unique seal of authenticity. Quick inspection of the nanoscale tag by optical microscopy allows the shape to be compared against the genuine dataset, enabling unique identification. The optical features of 2D materials, such as Raman and/or photoluminescence signals can be used as an additional chemical fingerprint, making the anticounterfeiting solution very robust.

2.
J Comput Electron ; 22(5): 1327-1337, 2023.
Article in English | MEDLINE | ID: mdl-37840652

ABSTRACT

NanoTCAD ViDES (Versatile DEvice Simulator) is an open-source suite of computing codes aimed at assessing the operation and the performance of nanoelectronic devices. It has served the computational nanoelectronic community for almost two decades and it is freely available to researchers around the world in its website (http://vides.nanotcad.com), being employed in hundreds of works by many electronic device simulation groups worldwide. We revise the code structure and its main modules and we present the new features directed towards (i) multi-scale approaches exploiting ab-initio electron-structure calculations, aiming at the exploitation of new physics in electronic devices, (ii) the inclusion of arbitrary heterostructures of layered materials to devise original device architectures and operation, and (iii) the exploration of novel low-cost, green technologies in the mesoscopic scale, as, e.g. printed electronics.

3.
Nanoscale ; 15(12): 5689-5695, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36880645

ABSTRACT

2-Dimensional (2D) materials are attracting strong interest in printed electronics because of their unique properties and easy processability, enabling the fabrication of devices with low cost and mass scalable methods such as inkjet printing. For the fabrication of fully printed devices, it is of fundamental importance to develop a printable dielectric ink, providing good insulation and the ability to withstand large electric fields. Hexagonal boron nitride (h-BN) is typically used as a dielectric in printed devices. However, the h-BN film thickness is usually above 1 µm, hence limiting the use of h-BN in low-voltage applications. Furthermore, the h-BN ink is composed of nanosheets with broad lateral size and thickness distributions, due to the use of liquid-phase exfoliation (LPE). In this work, we investigate anatase TiO2 nanosheets (TiO2-NS), produced by a mass scalable bottom-up approach. We formulate the TiO2-NS into a water-based and printable solvent and demonstrate the use of the material with sub-micron thickness in printed diodes and transistors, hence validating the strong potential of TiO2-NS as a dielectric for printed electronics.

4.
Sci Adv ; 9(7): eade5706, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36791201

ABSTRACT

Van der Waals coupling with different stacking configurations is emerging as a powerful method to tune the optical and electronic properties of atomically thin two-dimensional materials. Here, we investigate 3R-stacked transition-metal dichalcogenides as a possible option for high-performance atomically thin field-effect transistors (FETs). We report that the effective mobility of 3R bilayer WS2 (WSe2) is 65% (50%) higher than that of 2H WS2 (WSe2). The 3R bilayer WS2 n-type FET exhibits a high on-state current of 480 µA/µm at Vds = 1 V and an ultralow on-state resistance of 1 kilohm·µm. Our observations, together with multiscale simulations, reveal that these improvements originate from the strong interlayer coupling in the 3R stacking, which is reflected in a higher conductance compared to the 2H stacking. Our method provides a general and scalable route toward advanced channel materials in future electronic devices for ultimate scaling, especially for complementary metal oxide semiconductor applications.

5.
Adv Mater ; 35(14): e2209371, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36644893

ABSTRACT

Monolayer MoS2 has attracted significant attention owing to its excellent performance as an n-type semiconductor from the transition metal dichalcogenide (TMDC) family. It is however strongly desired to develop controllable synthesis methods for 2D p-type MoS2 , which is crucial for complementary logic applications but remains difficult. In this work, high-quality NbS2 -MoS2 lateral heterostructures are synthesized by one-step metal-organic chemical vapor deposition (MOCVD) together with monolayer MoS2 substitutionally doped by Nb, resulting in a p-type doped behavior. The heterojunction shows a p-type transfer characteristic with a high on/off current ratio of ≈104 , exceeding previously reported values. The band structure through the NbS2 -MoS2 heterojunction is investigated by density functional theory (DFT) and quantum transport simulations. This work provides a scalable approach to synthesize substitutionally doped TMDC materials and provides an insight into the interface between 2D metals and semiconductors in lateral heterostructures, which is imperative for the development of next-generation nanoelectronics and highly integrated devices.

6.
NPJ 2D Mater Appl ; 7(1): 73, 2023.
Article in English | MEDLINE | ID: mdl-38665485

ABSTRACT

This work demonstrates the fabrication and characterization of single-layer MoS2 field-effect transistors using biodegradable albumen (chicken eggwhite) as gate dielectric. By introducing albumen as an insulator for MoS2 transistors high carrier mobilities (up to ~90 cm2 V-1 s-1) are observed, which is remarkably superior to that obtained with commonly used SiO2 dielectric which we attribute to ionic gating due to the formation of an electric double layer in the albumen MoS2 interface. In addition, the investigated devices are characterized upon illumination, observing responsivities of 4.5 AW-1 (operated in photogating regime) and rise times as low as 52 ms (operated in photoconductivity regime). The presented study reveals the combination of albumen with van der Waals materials for prospective biodegradable and biocompatible optoelectronic device applications. Furthermore, the demonstrated universal fabrication process can be easily adopted to fabricate albumen-based devices with any other van der Waals material.

7.
Nanoscale Horiz ; 7(1): 41-50, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34877960

ABSTRACT

Ultrafast photodetectors based on two-dimensional materials suffer from low responsivities and high dark currents. Interlayer exciton dissociation in type-II vertical heterojunctions of transition metal dichalcogenides is a viable mechanism for achieving higher responsivities with picosecond response times. Here, we propose a novel device concept based on these structures, with potential for self-powered photodetector applications characterized by an unprecedented trade-off between speed and responsivity with zero dark current. In order to assess the realistic performance to be expected in the proposed device, we have purposely devised a simulation approach able to provide a detailed investigation of the physics at play, while showing excellent predictive capabilities when compared with experiments on interlayer exciton transport available in the literature. The proposed high-performance photodetectors with tunable responsivities are at reach with available fabrication techniques and could help in paving the way towards monolithically integrated artificial neural networks for ultrafast machine vision in speed sensitive applications.

8.
Sci Rep ; 11(1): 18482, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34531506

ABSTRACT

Lateral heterostructures (LH) of monolayer-multilayer regions of the same noble transition metal dichalcogenide, such as platinum diselenide (PtSe2), are promising options for the fabrication of efficient two-dimensional field-effect transistors (FETs), by exploiting the dependence of the energy gap on the number of layers and the intrinsically high quality of the heterojunctions. Key for future progress in this direction is understanding the effects of the physics of the lateral interfaces on far-from-equilibrium transport properties. In this work, a multi-scale approach to device simulation, capable to include ab-initio modelling of the interfaces in a computationally efficient way, is presented. As an application, p- and n-type monolayer-multilayer PtSe2 LH-FETs are investigated, considering design parameters such as channel length, number of layers and junction quality. The simulations suggest that such transistors can provide high performance in terms of subthreshold characteristics and switching behavior, and that a single channel device is not capable, even in the ballistic defectless limit, to satisfy the requirements of the semiconductor roadmap for the next decade, and that stacked channel devices would be required. It is shown how ab-initio modelling of interfaces provides a reliable physical description of charge displacements in their proximity, which can be crucial to correctly predict device transport properties, especially in presence of strong dipoles, mixed stoichiometries or imperfections.

9.
Adv Sci (Weinh) ; 7(20): 2001594, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33101861

ABSTRACT

Combined dry-wet transient materials and devices are introduced, which are based on water-dissolvable dye-doped polymers layered onto nonpolar cyclic hydrocarbon sublimating substrates. Light-emitting heterostructures showing amplified spontaneous emission are obtained on transient elements and used as illumination sources for speckle-free, full-field imaging, and transient optical labels are realized that incorporate QR-codes with stably encoded information. The transient behavior is also studied at the microscopic scale, highlighting the real-time evolution of material domains in the sublimating compound. Finally, the exhausted components are fully soluble in water thus being naturally degradable. This technology opens new and versatile routes for environmental sensing, storage conditions monitoring, and organic photonics.

10.
Nat Commun ; 11(1): 3566, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32678084

ABSTRACT

Paper is the ideal substrate for the development of flexible and environmentally sustainable ubiquitous electronic systems, which, combined with two-dimensional materials, could be exploited in many Internet-of-Things applications, ranging from wearable electronics to smart packaging. Here we report high-performance MoS2 field-effect transistors on paper fabricated with a "channel array" approach, combining the advantages of two large-area techniques: chemical vapor deposition and inkjet-printing. The first allows the pre-deposition of a pattern of MoS2; the second, the printing of dielectric layers, contacts, and connections to complete transistors and circuits fabrication. Average ION/IOFF of 8 × 103 (up to 5 × 104) and mobility of 5.5 cm2 V-1 s-1 (up to 26 cm2 V-1 s-1) are obtained. Fully functional integrated circuits of digital and analog building blocks, such as logic gates and current mirrors, are demonstrated, highlighting the potential of this approach for ubiquitous electronics on paper.

11.
Nat Commun ; 11(1): 3385, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32636377

ABSTRACT

Nanoelectronic devices based on 2D materials are far from delivering their full theoretical performance potential due to the lack of scalable insulators. Amorphous oxides that work well in silicon technology have ill-defined interfaces with 2D materials and numerous defects, while 2D hexagonal boron nitride does not meet required dielectric specifications. The list of suitable alternative insulators is currently very limited. Thus, a radically different mindset with respect to suitable insulators for 2D technologies may be required. We review possible solution scenarios like the creation of clean interfaces, production of native oxides from 2D semiconductors and more intensive studies on crystalline insulators.

12.
Nanoscale ; 12(12): 6708-6716, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32186302

ABSTRACT

We report room temperature Hall mobility measurements, low temperature magnetoresistance analysis and low-frequency noise characterization of inkjet-printed graphene films on fused quartz and SiO2/Si substrates. We found that thermal annealing in vacuum at 450 °C is a necessary step in order to stabilize the Hall voltage across the devices, allowing their electrical characterization. The printed films present a minimum sheet resistance of 23.3 Ω sq-1 after annealing, and are n-type doped, with carrier concentrations in the low 1020 cm-3 range. The charge carrier mobility is found to increase with increasing film thickness, reaching a maximum value of 33 cm2 V-1 s-1 for a 480 nm-thick film printed on SiO2/Si. Low-frequency noise characterization shows a 1/f noise behavior and a Hooge parameter in the range of 0.1-1. These results represent the first in-depth electrical and noise characterization of transport in inkjet-printed graphene films, able to provide physical insights on the mechanisms at play.

13.
ACS Nano ; 14(2): 1982-1989, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31935062

ABSTRACT

The bandgap dependence on the number of atomic layers of some families of two-dimensional (2D) materials can be exploited to engineer and use lateral heterostructures (LHs) as high-performance field-effect transistors (FETs). This option can provide very good lattice matching as well as high heterointerface quality. More importantly, this bandgap modulation with layer stacking can give rise to steep transitions in the density of states (DOS) of the 2D material that can eventually be used to achieve sub-60 mV/decade subthreshold swing in LH-FETs thanks to an energy-filtering source. We have observed this effect in the case of a PdS2 LH-FET due to the particular DOS of its bilayer configuration. Our results are based on ab initio and multiscale materials and device modeling and incite the exploration of the 2D-material design space in order to find more abrupt DOS transitions and better suitable candidates.

14.
ACS Nano ; 13(1): 54-60, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30452230

ABSTRACT

A well-defined insulating layer is of primary importance in the fabrication of passive ( e.g., capacitors) and active ( e.g., transistors) components in integrated circuits. One of the most widely known two-dimensional (2D) dielectric materials is hexagonal boron nitride (hBN). Solution-based techniques are cost-effective and allow simple methods to be used for device fabrication. In particular, inkjet printing is a low-cost, noncontact approach, which also allows for device design flexibility, produces no material wastage, and offers compatibility with almost any surface of interest, including flexible substrates. In this work, we use water-based and biocompatible graphene and hBN inks to fabricate all-2D material and inkjet-printed capacitors. We demonstrate an areal capacitance of 2.0 ± 0.3 nF cm-2 for a dielectric thickness of ∼3 µm and negligible leakage currents, averaged across more than 100 devices. This gives rise to a derived dielectric constant of 6.1 ± 1.7. The inkjet printed hBN dielectric has a breakdown field of 1.9 ± 0.3 MV cm-1. Fully printed capacitors with sub-micrometer hBN layer thicknesses have also been demonstrated. The capacitors are then exploited in two fully printed demonstrators: a resistor-capacitor (RC) low-pass filter and a graphene-based field effect transistor.

15.
Nat Nanotechnol ; 13(6): 520, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29789635

ABSTRACT

In the version of this Perspective originally published, in the email address for the author Giuseppe Iannaccone, the surname was incorrectly given as "innaconne"; this has now been corrected in all versions of the Perspective. Also, an error in the production process led to Figs. 1, 2 and 3 being of low resolution; these have now been replaced with higher-quality versions.

16.
Nat Nanotechnol ; 13(3): 183-191, 2018 03.
Article in English | MEDLINE | ID: mdl-29511331

ABSTRACT

Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

17.
Adv Mater ; 30(18): e1707200, 2018 May.
Article in English | MEDLINE | ID: mdl-29569298

ABSTRACT

New device concepts can increase the functionality of scaled electronic devices, with reconfigurable diodes allowing the design of more compact logic gates being one of the examples. In recent years, there has been significant interest in creating reconfigurable diodes based on ultrathin transition metal dichalcogenide crystals due to their unique combination of gate-tunable charge carriers, high mobility, and sizeable band gap. Thanks to their large surface areas, these devices are constructed under planar geometry and the device characteristics are controlled by electrostatic gating through rather complex two independent local gates or ionic-liquid gating. In this work, similar reconfigurable diode action is demonstrated in a WSe2 transistor by only utilizing van der Waals bonded graphene and Co/h-BN contacts. Toward this, first the charge injection efficiencies into WSe2 by graphene and Co/h-BN contacts are characterized. While Co/h-BN contact results in nearly Schottky-barrier-free charge injection, graphene/WSe2 interface has an average barrier height of ≈80 meV. By taking the advantage of the electrostatic transparency of graphene and the different work-function values of graphene and Co/h-BN, vertical devices are constructed where different gate-tunable diode actions are demonstrated. This architecture reveals the opportunities for exploring new device concepts.

18.
Sci Rep ; 7(1): 11575, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912464

ABSTRACT

We present an experimental investigation of slow transients in the gate and drain currents of MoS2-based transistors. We focus on the measurement of both the gate and drain currents and, from the comparative analysis of the current transients, we conclude that there are at least two independent trapping mechanisms: trapping of charges in the silicon oxide substrate, occurring with time constants of the order of tens of seconds and involving charge motion orthogonal to the MoS2 sheet, and trapping at the channel surface, which occurs with much longer time constants, in particular when the device is in a vacuum. We observe that the presence of such slow phenomena makes it very difficult to perform reliable low-frequency noise measurements, requiring a stable and repeatable steady-state bias point condition, and may explain the sometimes contradictory results that can be found in the literature about the dependence of the flicker noise power spectral density on gate bias.

19.
Nanoscale ; 9(33): 11944-11950, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28792041

ABSTRACT

Vertical metal-insulator-graphene (MIG) diodes for radio frequency (RF) power detection are realized using a scalable approach based on graphene grown by chemical vapor deposition and TiO2 as barrier material. The temperature dependent current flow through the diode can be described by thermionic emission theory taking into account a bias induced barrier lowering at the graphene TiO2 interface. The diodes show excellent figures of merit for static operation, including high on-current density of up to 28 A cm-2, high asymmetry of up to 520, strong maximum nonlinearity of up to 15, and large maximum responsivity of up to 26 V-1, outperforming state-of-the-art metal-insulator-metal and MIG diodes. RF power detection based on MIG diodes is demonstrated, showing a responsivity of 2.8 V W-1 at 2.4 GHz and 1.1 V W-1 at 49.4 GHz.

20.
Sci Rep ; 7(1): 5016, 2017 07 10.
Article in English | MEDLINE | ID: mdl-28694459

ABSTRACT

Two-dimensional (2D) material based FETs are being considered for future technology nodes and high performance logic applications. However, a comprehensive assessment of 2D material based FETs has been lacking for high performance logic applications considering appropriate system level figure-of-merits (FOMs) e.g. delay, and energy-delay product. In this paper, we present guidelines for 2D material based FETs to meet sub-10 nm high performance logic requirements focusing on material requirement, device design, energy-delay optimization for the first time. We show the need for 2D materials with smaller effective mass in the transport direction and anisotropicity to meet the performance requirement for future technology nodes. We present novel device designs with one such 2D material (monolayer black-phosphorus) to keep Moore's alive for the HP logic in sub-5 nm gate length regime. With these device proposals we show that below 5 nm gate lengths 2D electrostatistics arising from gate stack design becomes more of a challenge than direct source-to-drain tunneling for 2D material-based FETs. Therefore, it is challenging to meet both delay and energy-delay requirement in sub-5 nm gate length regime without scaling both supply voltage (V DD ) and effective-oxide-thickness (EOT) below 0.5 V and 0.5 nm respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...