Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Annu Rev Phytopathol ; 62(1): 127-156, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39251211

ABSTRACT

Arbuscular mycorrhizal (AM) symbiosis is the oldest and most widespread mutualistic association on Earth and involves plants and soil fungi belonging to Glomeromycotina. A complex molecular, cellular, and genetic developmental program enables partner recognition, fungal accommodation in plant tissues, and activation of symbiotic functions such as transfer of phosphorus in exchange for carbohydrates and lipids. AM fungi, as ancient obligate biotrophs, have evolved strategies to circumvent plant defense responses to guarantee an intimate and long-lasting mutualism. They are among those root-associated microorganisms able to boost plants' ability to cope with biotic stresses leading to mycorrhiza-induced resistance (MIR), which can be effective across diverse hosts and against different attackers. Here, we examine the molecular mechanisms underlying the modulation of plant immunity during colonization by AM fungi and at the onset and display of MIR against belowground and aboveground pests and pathogens. Understanding the MIR efficiency spectrum and its regulation is of great importance to optimizing the biotechnological application of these beneficial microbes for sustainable crop protection.


Subject(s)
Mycorrhizae , Plant Immunity , Symbiosis , Mycorrhizae/physiology , Plants/immunology , Plants/microbiology , Plant Diseases/microbiology , Plant Diseases/immunology
2.
New Phytol ; 193(3): 755-769, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22092242

ABSTRACT

• The arbuscular mycorrhizal symbiosis is arguably the most ecologically important eukaryotic symbiosis, yet it is poorly understood at the molecular level. To provide novel insights into the molecular basis of symbiosis-associated traits, we report the first genome-wide analysis of the transcriptome from Glomus intraradices DAOM 197198. • We generated a set of 25,906 nonredundant virtual transcripts (NRVTs) transcribed in germinated spores, extraradical mycelium and symbiotic roots using Sanger and 454 sequencing. NRVTs were used to construct an oligoarray for investigating gene expression. • We identified transcripts coding for the meiotic recombination machinery, as well as meiosis-specific proteins, suggesting that the lack of a known sexual cycle in G. intraradices is not a result of major deletions of genes essential for sexual reproduction and meiosis. Induced expression of genes encoding membrane transporters and small secreted proteins in intraradical mycelium, together with the lack of expression of hydrolytic enzymes acting on plant cell wall polysaccharides, are all features of G. intraradices that are shared with ectomycorrhizal symbionts and obligate biotrophic pathogens. • Our results illuminate the genetic basis of symbiosis-related traits of the most ancient lineage of plant biotrophs, advancing future research on these agriculturally and ecologically important symbionts.


Subject(s)
Glomeromycota/genetics , Mycorrhizae/genetics , Symbiosis/genetics , Transcriptome/genetics , Base Sequence , Colony Count, Microbial , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Gene Library , Genes, Fungal/genetics , Glomeromycota/growth & development , Meiosis/genetics , Mycelium/genetics , Mycorrhizae/growth & development , Plants/microbiology , Polymorphism, Single Nucleotide/genetics , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL