Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Struct Biol ; 4: 246-255, 2022.
Article in English | MEDLINE | ID: mdl-35941867

ABSTRACT

The temporary or permanent chemical modification of biomolecules is a crucial aspect in the physiology of all living species. However, while some modules are well characterised also in insects, others did not receive the same attention. This holds true for sulfo-conjugation that is catalysed by cytosolic sulfotransferases (SULT), a central component of the metabolism of endogenous low molecular weight molecules and xenobiotics. In particular, limited information is available about the functional roles of the mosquito predicted enzymes annotated as SULTs in genomic databases. The herein described research is the first example of a biochemical and structural study of a SULT of a mosquito species, in general, and of the malaria vector Anopheles gambiae in particular. We confirmed that the AGAP001425 transcript displays a peculiar expression pattern that is suggestive of a possible involvement in modulating the mosquito reproductive tissues physiology, a fact that could raise attention on the enzyme as a potential target for insect-containment strategies. The crystal structures of the enzyme in alternative ligand-bound states revealed elements distinguishing AgSULT-001425 from other characterized SULTs, including a peculiar conformational plasticity of a discrete region that shields the catalytic cleft and that could play a main role in the dynamics of the reaction and in the substrate selectivity of the enzyme. Along with further in vitro biochemical studies, our structural investigations could provide a framework for the discovery of small-molecule inhibitors to assess the effect of interfering with AgSULT-001425-mediated catalysis at the organismal level.

2.
Sci Rep ; 12(1): 9536, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35681077

ABSTRACT

Mosquito saliva facilitates blood feeding through the anti-haemostatic, anti-inflammatory and immunomodulatory properties of its proteins. However, the potential contribution of non-coding RNAs to host manipulation is still poorly understood. We analysed small RNAs from Aedes aegypti saliva and salivary glands and show here that chikungunya virus-infection triggers both the siRNA and piRNA antiviral pathways with limited effects on miRNA expression profiles. Saliva appears enriched in specific miRNA subsets and its miRNA content is well conserved among mosquitoes and ticks, clearly pointing to a non-random sorting and occurrence. Finally, we provide evidence that miRNAs from Ae. aegypti saliva may target human immune and inflammatory pathways, as indicated by prediction analysis and searching for experimentally validated targets of identical human miRNAs. Overall, we believe these observations convincingly support a scenario where both proteins and miRNAs from mosquito saliva are injected into vertebrates during blood feeding and contribute to the complex vector-host-pathogen interactions.


Subject(s)
Aedes , Chikungunya virus , MicroRNAs , Aedes/genetics , Aedes/virology , Animals , Chikungunya Fever , Humans , MicroRNAs/genetics , Mosquito Vectors/genetics , Mosquito Vectors/virology , RNA, Small Interfering/genetics , Saliva , Salivary Glands/metabolism
3.
Sci Rep ; 9(1): 2955, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30814633

ABSTRACT

During blood feeding haematophagous arthropods inject into their hosts a cocktail of salivary proteins whose main role is to counteract host haemostasis, inflammation and immunity. However, animal body fluids are known to also carry miRNAs. To get insights into saliva and salivary gland miRNA repertoires of the African malaria vector Anopheles coluzzii we used small RNA-Seq and identified 214 miRNAs, including tissue-enriched, sex-biased and putative novel anopheline miRNAs. Noteworthy, miRNAs were asymmetrically distributed between saliva and salivary glands, suggesting that selected miRNAs may be preferentially directed toward mosquito saliva. The evolutionary conservation of a subset of saliva miRNAs in Anopheles and Aedes mosquitoes, and in the tick Ixodes ricinus, supports the idea of a non-random occurrence pointing to their possible physiological role in blood feeding by arthropods. Strikingly, eleven of the most abundant An. coluzzi saliva miRNAs mimicked human miRNAs. Prediction analysis and search for experimentally validated targets indicated that miRNAs from An. coluzzii saliva may act on host mRNAs involved in immune and inflammatory responses. Overall, this study raises the intriguing hypothesis that miRNAs injected into vertebrates with vector saliva may contribute to host manipulation with possible implication for vector-host interaction and pathogen transmission.


Subject(s)
Anopheles/genetics , Host-Pathogen Interactions/genetics , MicroRNAs/genetics , Aedes/genetics , Animals , Disease Vectors , Humans , Malaria/metabolism , Mosquito Vectors , Saliva/chemistry , Salivary Glands/metabolism , Salivary Proteins and Peptides/metabolism , Sequence Analysis, RNA/methods
4.
BMC Genomics ; 18(1): 770, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-29020917

ABSTRACT

BACKGROUND: The Asian tiger mosquito Aedes albopictus is a highly invasive species and competent vector of several arboviruses (e.g. dengue, chikungunya, Zika) and parasites (e.g. dirofilaria) of public health importance. Compared to other mosquito species, Ae. albopictus females exhibit a generalist host seeking as well as a very aggressive biting behaviour that are responsible for its high degree of nuisance. Several complex mosquito behaviours such as host seeking, feeding, mating or oviposition rely on olfactory stimuli that target a range of sensory neurons localized mainly on specialized head appendages such as antennae, maxillary palps and the mouthparts. RESULTS: With the aim to describe the Ae. albopictus olfactory repertoire we have used RNA-seq to reveal the transcriptome profiles of female antennae and maxillary palps. Male heads and whole female bodies were employed as reference for differential expression analysis. The relative transcript abundance within each tissue (TPM, transcripts per kilobase per million) and the pairwise differential abundance in the different tissues (fold change values and false discovery rates) were evaluated. Contigs upregulated in the antennae (620) and maxillary palps (268) were identified and relative GO and PFAM enrichment profiles analysed. Chemosensory genes were described: overall, 77 odorant binding proteins (OBP), 82 odorant receptors (OR), 60 ionotropic receptors (IR) and 30 gustatory receptors (GR) were identified by comparative genomics and transcriptomics. In addition, orthologs of genes expressed in the female/male maxillary palps and/or antennae and involved in thermosensation (e.g. pyrexia and arrestin1), mechanosensation (e.g. piezo and painless) and neuromodulation were classified. CONCLUSIONS: We provide here the first detailed transcriptome of the main Ae. albopictus sensory appendages, i.e. antennae and maxillary palps. A deeper knowledge of the olfactory repertoire of the tiger mosquito will help to better understand its biology and may pave the way to design new attractants/repellents.


Subject(s)
Aedes/genetics , Aedes/physiology , Gene Expression Profiling , Genomics , Smell/genetics , Animals , Humidity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cell Surface/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...