Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Infect Public Health ; 17(6): 967-974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631066

ABSTRACT

BACKGROUND: Candidemia is the most common healthcare associated invasive fungal infection. Over the last few decades, candidemia caused by Candida species other than Candida albicans, particularly the Candida parapsilosis complex, has emerged worldwide. The aims of this study were: to analyze the genotypic and phenotypic characteristics of C. parapsilosis strains isolated from blood cultures and the environment in a hospital in southern Italy, to study the possible source of infection and to correlate the isolated strains. METHODS: From April to October 2022, cases of candidemia due to C. parapsilosis in patients admitted to a hospital in the Apulia region were investigated. However, 119 environmental samples from the intensive care unit were collected for identification of the likely environmental reservoir of infection. Routine antifungal (amphotericin B, anidulafungin, fluconazole) susceptibility was performed on all isolates. Whole genome sequencing was performed to study the genotypic correlation of the isolates. Biofilm biomass and metabolic activity were also quantified for all isolates. RESULTS: A total of 43 C. parapsilosis isolates were cultured from the bloodstream of each patient in different departments, and seven surface samples were positive for C. parapsilosis. Most of the isolated yeasts (41/50; 85 %) were resistant to fluconazole and were genetically related to each other, suggesting an ongoing clonal outbreak of this pathogen. The fluconazole-susceptible isolates produced significantly more biofilm than did the resistant isolates. Metabolic activity was also higher for fluconazole-susceptible than resistant isolates. CONCLUSION: Cross-transmission of the microorganisms is suggested by the phenotypic similarity and genetic correlation between clinical and environmental strains observed in our study.


Subject(s)
Antifungal Agents , Biofilms , Candida parapsilosis , Candidemia , Cross Infection , Genotype , Hospitals, Teaching , Microbial Sensitivity Tests , Phenotype , Humans , Italy/epidemiology , Candidemia/microbiology , Candidemia/epidemiology , Antifungal Agents/pharmacology , Candida parapsilosis/drug effects , Candida parapsilosis/genetics , Candida parapsilosis/isolation & purification , Candida parapsilosis/classification , Cross Infection/microbiology , Cross Infection/epidemiology , Biofilms/growth & development , Drug Resistance, Fungal , Whole Genome Sequencing , Female , Fluconazole/pharmacology , Male
2.
Microb Drug Resist ; 29(9): 388-391, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37222764

ABSTRACT

Although coagulase negative staphylococci are rarely associated with complicated diseases, in some cases they cause life-threatening infections. Here we described a clinical case of a bacteremia due to a methicillin- and linezolid-resistant Staphylococcus capitis in a patient previously treated with linezolid. Whole genome sequencing revealed the common mutation G2576T in all rDNA 23S alleles and several acquired resistance genes. Moreover, the isolate was epidemiologically distant from the NRCS-A clade, usually responsible for nosocomial infections in neonatal intensive care units. Our findings further confirm the ability of minor staphylococci to acquire antibiotic resistances and challenge the treatment of these infections.


Subject(s)
Bacteremia , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Staphylococcus capitis , Infant, Newborn , Humans , Linezolid/pharmacology , Linezolid/therapeutic use , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/drug therapy , Coagulase/genetics , Microbial Sensitivity Tests , Staphylococcus/genetics , Bacteremia/drug therapy , Genomics , Hospitals
3.
J Fungi (Basel) ; 8(10)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36294642

ABSTRACT

Candida spp. is the major causative agent of fungal infections in hospitalized patients and the fourth most common cause of nosocomial bloodstream infection (BSI). The availability of standardized methods for testing the in vitro activity of antifungals along with the expanding of antifungal armamentarium, the rising of drug-resistance and the persistence of a high mortality rate in systemic candidiasis have led to an increased interest in combination therapy. Therefore, we aimed to review the scientific literature concerning the antifungal combinations against Candida. A literature search performed in PubMed yielded 92 studies published from 2000 to 2021: 29 articles referring to in vitro studies, six articles referring to either in vitro and in vivo (i.e., animal models) studies and 57 clinical articles. Pre-clinical studies involved 735 isolates of Candida species and 12 unique types of antifungal combination approaches including azoles plus echinocandins (19%), polyenes plus echinocandins (16%), polyenes plus azoles (13%), polyenes plus 5-flucytosine ([5-FC], 13%), azoles plus 5-FC (11%) and other types of combinations (28%). Results varied greatly, often being species-, drug- and methodology-dependent. Some combinatorial regimens exerted a synergistic effect against difficult-to-treat Candida species (i.e., azoles plus echinocandins; polyenes plus 5-FC) or they were more effective than monotherapy in prevent or reducing biofilm formation and in speeding the clearance of infected tissues (i.e., polyenes plus echinocandins). In 283 patients with documented Candida infections (>90% systemic candidiasis/BSI), an antifungal combination approach could be evaluated. Combinations included: azoles plus echinocandins (36%), 5-FC-combination therapies (24%), polyenes plus azoles (18%), polyenes plus echinocandins (16%) and other types of combination therapy (6%). Case reports describing combination therapies yielded favorable response in most cases, including difficult-to-treat fungal infections (i.e., endocarditis, osteoarticular infections, CNS infections) or difficult-to-treat fungal pathogens. The only randomized trial comparing amphotericin-B deoxycholate (AMB) plus FLU vs. AMB alone for treatment of BSI in nonneutropenic patients showed that the combination trended toward improved success and more-rapid clearance from the bloodstream. In summary, antifungal combinations against Candida have produced great interest in the past two decades. To establish whether this approach can become a reliable treatment option, additional in vitro and clinical data are warranted.

4.
J Fungi (Basel) ; 8(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36012859

ABSTRACT

Aspergillosis, which is mainly sustained by Aspergillus fumigatus, includes a broad spectrum of diseases. They are usually severe in patients with co-morbidities. The first-line therapy includes triazoles, for which an increasing incidence of drug resistance has been lately described. As a consequence of this, the need for new and alternative antifungal molecules is absolutely necessary. As peptides represent promising antimicrobial molecules, two lipopeptides (C14-NleRR-NH2, C14-WRR-NH2) were tested to assess the antifungal activity against azole-resistant A. fumigatus. Antifungal activity was evaluated by determination of minimum inhibitory concentrations (MICs), time-kill curves, XTT assay, optical microscopy, and checkerboard combination with isavuconazole. Both lipopeptides showed antifungal activity, with MICs ranging from 8 mg/L to 16 mg/L, and a dose-dependent effect was confirmed by both time-kill curves and XTT assays. Microscopy showed that hyphae growth was hampered at concentrations equal to or higher than MICs. The rising antifungal resistance highlights the usefulness of novel compounds to treat severe fungal infections. Although further studies assessing the activity of lipopeptides are necessary, these molecules could be effective antifungal alternatives that overcome the current resistances.

6.
J Glob Antimicrob Resist ; 30: 377-383, 2022 09.
Article in English | MEDLINE | ID: mdl-35842115

ABSTRACT

OBJECTIVES: Ceftolozane/tazobactam (C/T) is a novel cephalosporin and ß-lactamase inhibitor combination with great activity against Pseudomonas aeruginosa. To assess P. aeruginosa susceptibility to C/T, a surveillance study was conducted from October 2018 to March 2019 at the University Hospital 'Ospedali Riuniti' in Ancona, Italy. METHODS: Minimum inhibitory concentrations (MICs) to C/T were determined by Etest strip. Resistant isolates were characterized by phenotypic (broth microdilution antimicrobial susceptibility testing and modified Carbapenem Inactivation Method [mCIM]) and genotypic (Polymerase Chain Reaction [PCR], Pulsed Field Gel Electrophoresis [PFGE], and whole-genome sequencing [WGS]) methods. Clinical variables of patients infected by C/T-resistant P. aeruginosa were collected from medical records. RESULTS: Fifteen of 317 P. aeruginosa collected showed resistance to C/T (4.7%). Ten strains demonstrated carbapenemase activity by mCIM method, and PCR confirmed that eight strains harbored a blaVIM gene while the other two were positive for blaIMP. Additionally, three isolates carried acquired extended spectrum ß-lactamase genes (two isolates carried blaPER and one carried blaGES). Eight strains were strictly related by PFGE and WGS analysis confirmed that they belonged to sequence type (ST)111. The other STs found were ST175 (two isolates), ST235 (two isolates), ST70 (one isolate), ST621 (one isolate), and the new ST3354 (one isolate). Most patients had received previous antibiotic therapies, carried invasive devices, and experienced prolonged hospitalization. CONCLUSION: This study demonstrated the presence of C/T-resistant P. aeruginosa isolates in a regional hospital carrying a number of resistance mechanisms acquired by different high-risk clones.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Drug Resistance, Multiple, Bacterial/genetics , Hospitals , Humans , Pseudomonas Infections/microbiology , Tazobactam/pharmacology , Tazobactam/therapeutic use
8.
J Antimicrob Chemother ; 77(2): 331-337, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35076077

ABSTRACT

OBJECTIVES: To characterize a linezolid-resistant Enterococcus gallinarum isolate of porcine origin co-carrying cfr, optrA and poxtA genes. METHODS: The genome was sequenced using the Illumina and Nanopore platforms. The presence of circular intermediates was examined by inverse PCR. Transferability of oxazolidinone resistance genes was investigated by transformation and conjugation. RESULTS: Two plasmids, the cfr- and optrA-carrying pEgFS4-1 (35 kb) and the poxtA-harbouring pEgFS4-2 (38 kb), were identified. pEgFS4-1 disclosed a distinctive mosaic structure with two cargo regions bounded by identical IS1216 elements interpolated into a backbone related to that of Enterococcus faecium vanA-containing pVEF2. The first cargo region included the cfr and optrA contexts, whereas the second one carried a Tn554 remnant and the lnu(A) gene. Both regions were able to excise in circular form as a unique translocable unit. pEgFS4-2 plasmid was 99% identical to a not fully described E. faecium pSBC1 plasmid. The poxtA environment, flanked by IS1216, was proved to be unstable. pEgFS4-2 also exhibited another cargo region containing the tet(M)-tet(L) genes arranged in tandem and its circular form was detected. Transformation and conjugation experiments failed to demonstrate the transferability of both plasmids to enterococcal recipients. Both plasmids persisted in the absence of selective pressure. CONCLUSIONS: To the best of our knowledge, this is the first description of a linezolid-resistant E. gallinarum isolate of swine origin carrying cfr, optrA and poxtA genes. The co-presence of three linezolid resistance determinants in an intrinsically vancomycin-resistant enterococcal species is cause of concern.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Enterococcus , Enterococcus faecalis , Enterococcus faecium/genetics , Genes, Bacterial , Gram-Positive Bacterial Infections/veterinary , Linezolid/pharmacology , Plasmids/genetics , Swine , Vancomycin-Resistant Enterococci/genetics
9.
J Antimicrob Chemother ; 77(3): 598-603, 2022 02 23.
Article in English | MEDLINE | ID: mdl-34910146

ABSTRACT

OBJECTIVES: To investigate the genetic elements and the transferability of linezolid resistance genes in three enterococci co-carrying cfr(D) and poxtA2 isolates from manure of a swine farm in central Italy. METHODS: Two Enterococcus faecalis isolates and one Enterococcus casseliflavus isolate carrying both cfr(D) and poxtA genes were tested for their susceptibility to florfenicol, chloramphenicol, linezolid, tedizolid, tetracycline and vancomycin. Linezolid resistance genes transfer (filter mating), localization (S1-PFGE/hybridization), genetic elements and relatedness between isolates (WGS) were analysed. RESULTS: Two E. faecalis isolates and one E. casseliflavus isolate carried the cfr(D) gene and the recently described poxtA2 variant. In the three enterococci, cfr(D) and poxtA2 were co-located on a 33 480 bp plasmid, pV386, 95%-100% identical (coverage 84%) to the Tn6349 transposon of Staphylococcus aureus AOUC-0915. In all isolates, both genes also showed a chromosomal location. Same sequence identities were found from the comparison with currently known poxtA2 genetic elements. In the plasmid pV386, poxtA2 gene was not bounded by two IS1216, as described in pIB-BOL, but closely associated to the cfr(D) and fexA genes. pV386 was always transferred by filter mating to Enterococcus faecium 64/3 recipient. CONCLUSIONS: The occurrence of the pV386 plasmid in E. faecalis and E. casseliflavus from swine manure is of great concern and highlights the need for control measures to contain its spread to other enterococcal species.


Subject(s)
Enterococcus faecalis , Manure , Animals , Drug Resistance, Bacterial/genetics , Enterococcus , Enterococcus faecalis/genetics , Linezolid/pharmacology , Plasmids/genetics , Swine
10.
Antibiotics (Basel) ; 10(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34827279

ABSTRACT

Metallo-ß-lactamases (MBLs) are among the most challenging bacterial enzymes to overcome. Aztreonam (ATM) is the only ß-lactam not hydrolyzed by MBLs but is often inactivated by co-produced extended-spectrum ß-lactamases (ESBL). We assessed the activity of the combination of ATM with old and new ß-lactamases inhibitors (BLIs) against MBL and ESBL co-producing Gram-negative clinical isolates. Six Enterobacterales and three non-fermenting bacilli co-producing MBL and ESBL determinants were selected as difficult-to-treat pathogens. ESBLs and MBLs genes were characterized by PCR and sequencing. The activity of ATM in combination with seven different BLIs (clavulanate, sulbactam, tazobactam, vaborbactam, avibactam, relebactam, zidebactam) was assessed by microdilution assay and time-kill curve. ATM plus avibactam was the most effective combination, able to restore ATM susceptibility in four out of nine tested isolates, reaching in some cases a 128-fold reduction of the MIC of ATM. In addition, relebactam and zidebactam showed to be effective, but with lesser reduction of the MIC of ATM. E. meningoseptica and C. indologenes were not inhibited by any ATM-BLI combination. ATM-BLI combinations demonstrated to be promising against MBL and ESBL co-producers, hence providing multiple options for treatment of related infections. However, no effective combination was found for some non-fermentative bacilli, suggesting the presence of additional resistance mechanisms that complicate the choice of an active therapy.

11.
J Fungi (Basel) ; 7(9)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34575765

ABSTRACT

Dermatophytes are the most common cause of fungal infections worldwide, affecting millions of people annually. The emergence of resistance among dermatophytes along with the availability of antifungal susceptibility procedures suitable for testing antifungal agents against this group of fungi make the combinatorial approach particularly interesting to be investigated. Therefore, we reviewed the scientific literature concerning the antifungal combinations against dermatophytes. A literature search on the subject performed in PubMed yielded 68 publications: 37 articles referring to in vitro studies and 31 articles referring to case reports or clinical studies. In vitro studies involved over 400 clinical isolates of dermatophytes (69% Trichophyton spp., 29% Microsporum spp., and 2% Epidermophyton floccosum). Combinations included two antifungal agents or an antifungal agent plus another chemical compound including plant extracts or essential oils, calcineurin inhibitors, peptides, disinfectant agents, and others. In general, drug combinations yielded variable results spanning from synergism to indifference. Antagonism was rarely seen. In over 700 patients with documented dermatophyte infections, an antifungal combination approach could be evaluated. The most frequent combination included a systemic antifungal agent administered orally (i.e., terbinafine, griseofulvin, or azole-mainly itraconazole) plus a topical medication (i.e., azole, terbinafine, ciclopirox, amorolfine) for several weeks. Clinical results indicate that association of antifungal agents is effective, and it might be useful to accelerate the clinical and microbiological healing of a superficial infection. Antifungal combinations in dermatophytes have gained considerable scientific interest over the years and, in consideration of the interesting results available so far, it is desirable to continue the research in this field.

12.
Pharmaceutics ; 13(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34452078

ABSTRACT

Recently, mineral healing clays have gained much attention for wound-dressing applications. Here, we selected halloysite (HAL) clay as a biocompatible, non-toxic material that is useful as a drug delivery system to enhance the healing properties of water-soluble terpenoids 1-3 (T1-3). Terpenoids-loaded HAL clay (TH1-3) was prepared and characterized by adsorption equilibrium studies, X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and release studies. The results reveal that T1-3 were adsorbed at the HAL surface with good efficiency. The prevalent mechanism of drug retention is due to the adsorption via electrostatic interactions between the cationic groups of the T1-3 and the HAL's external surface. Release studies demonstrated that T3 was released in a higher percentage (>60%) compared to T1-2 (≈50%). Additionally, TH1-3 were assessed for their antimicrobial activity and capability to promote the re-epithelialization of scratched HaCat monolayers, through the time-kill test and the wound-healing assays, respectively. The results reveal that all the tested formulations were able to reduce the microbial growth after 1 h of incubation and that they ensured complete wound closure after 48 h. Furthermore, at the concentration of 1 µg/mL, TH3 exhibited 45% wound closure at 24 h, compared to TH1 (27%) and TH2 (30%), proving to be the best candidate in making the tissue-repair process easier and faster.

13.
Antibiotics (Basel) ; 10(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34439075

ABSTRACT

BACKGROUND: Ceftaroline represents a novel fifth-generation cephalosporin to treat infections caused by methicillin-resistant Staphylococcus aureus (MRSA). METHODS: Ceftaroline susceptibility of 239 MRSA isolates was assessed by disk diffusion and a MIC test strip following both EUCAST and CLSI guidelines. Non-susceptible isolates were epidemiologically characterized by pulsed-field gel electrophoresis, spa typing, and multilocus sequence typing, and further investigated by PCR and whole genome sequencing to detect penicillin-binding protein (PBP) mutations as well as antibiotic resistance and virulence genes. RESULTS: Fourteen isolates out of two hundred and thirty-nine (5.8%) were non-susceptible to ceftaroline (MIC > 1 mg/L), with differences between the EUCAST and CLSI interpretations. The characterized isolates belonged to seven different pulsotypes and three different clones (ST228/CC5-t041-SCCmecI, ST22/CC22-t18014-SCCmecIV, and ST22/CC22-t022-SCCmecIV), confirming a clonal diffusion of ceftaroline non-susceptible strains. Mutations in PBPs involved PBP2a for ST228-t041-SCCmecI strains and all the other PBPs for ST22-t18014-SCCmecIV and ST22-t022-SCCmecIV clones. All isolates harbored antibiotic resistance and virulence genes with a clonal distribution. CONCLUSION: Our study demonstrated that ceftaroline non-susceptibile isolates belonged not only to ST228 strains (the most widespread clone in Italy) but also to ST22, confirming the increasing role of these clones in hospital infections.

16.
Appl Environ Microbiol ; 87(9)2021 04 13.
Article in English | MEDLINE | ID: mdl-33608287

ABSTRACT

Linezolid is a last-resort antibiotic for the treatment of severe infections caused by multidrug-resistant Gram-positive organisms; although linezolid resistance remains uncommon, the number of linezolid-resistant enterococci has increased in recent years due to worldwide spread of acquired resistance genes (cfr, optrA, and poxtA) in clinical, animal, and environmental settings. In this study, we investigated the occurrence of linezolid-resistant enterococci in marine samples from two coastal areas in Italy. Isolates grown on florfenicol-supplemented Slanetz-Bartley agar plates were investigated for their carriage of optrA, poxtA, and cfr genes; optrA was found in one Enterococcus faecalis isolate, poxtA was found in three Enterococcus faecium isolates and two Enterococcus hirae isolates, and cfr was not found. Two of the three poxtA-carrying E. faecium isolates and the two E. hirae isolates showed related pulsed-field gel electrophoresis (PFGE) profiles. Two E. faecium isolates belonged to the new sequence type 1710, which clustered in clonal complex 94, encompassing nosocomial strains. S1 PFGE/hybridization assays showed a double (chromosome and plasmid) location of poxtA and a plasmid location of optrA Whole-genome sequencing revealed that poxtA was contained in a Tn6657-like element carried by two plasmids (pEfm-EF3 and pEh-GE2) of similar size, found in different species, and that poxtA was flanked by two copies of IS1216 in both plasmids. In mating experiments, all but one strain (E. faecalis EN3) were able to transfer the poxtA gene to E. faecium 64/3. The occurrence of linezolid resistance genes in enterococci from marine samples is of great concern and highlights the need to improve practices aimed at limiting the transmission of linezolid-resistant strains to humans from environmental reservoirs.IMPORTANCE Linezolid is one of the few antimicrobials available to treat severe infections due to drug-resistant Gram-positive bacteria; therefore, the emergence of linezolid-resistant enterococci carrying transferable resistance determinants is of great concern for public health. Linezolid resistance genes (cfr, optrA, and poxtA), often plasmid located, can be transmitted via horizontal gene transfer and have the potential to spread globally. This study highlights the detection of enterococci carrying linezolid resistance genes from sediment and zooplankton samples from two coastal urban areas in Italy. The presence of clinically relevant resistant bacteria, such as linezolid-resistant enterococci, in marine environments could reflect their spillover from human and/or animal reservoirs and could indicate that coastal seawaters also might represent a source of these resistance genes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Enterococcus/isolation & purification , Geologic Sediments/microbiology , Linezolid/pharmacology , Zooplankton/microbiology , Animals , Enterococcus/drug effects , Enterococcus/genetics , Environmental Monitoring , Genes, Bacterial , Italy
17.
Microbiol Immunol ; 65(2): 85-88, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33026691

ABSTRACT

We conducted a 10 years' retrospective study in 347 symptomatic individuals to assess the regional distribution of leptospirosis. A total of 173 individuals were diagnosed positive (49.8%): 11.5% were found positive to Leptospira by microscopic agglutination test positive, whereas 38.3% were found positive by microscopy analysis. The maximum peak of leptospirosis was reached in 2017 (n = 32). The most common serovars were Icterohaemorrhagiae and Poi.


Subject(s)
Leptospira , Leptospirosis , Agglutination Tests , Antibodies, Bacterial , Humans , Retrospective Studies , Serogroup
18.
Microorganisms ; 8(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348682

ABSTRACT

One hundred forty-five florfenicol-resistant enterococci, isolated from swine fecal samples collected from 76 pig farms, were investigated for the presence of optrA, cfr, and poxtA genes by PCR. Thirty florfenicol-resistant Enterococcus isolates had at least one linezolid resistance gene. optrA was found to be the most widespread linezolid resistance gene (23/30), while cfr and poxtA were detected in 6/30 and 7/30 enterococcal isolates, respectively. WGS analysis also showed the presence of the cfr(D) gene in Enterococcus faecalis (n = 2 isolates) and in Enterococcus avium (n = 1 isolate). The linezolid resistance genes hybridized both on chromosome and plasmids ranging from ~25 to ~240 kb. Twelve isolates were able to transfer linezolid resistance genes to enterococci recipient. WGS analysis displayed a great variability of optrA genetic contexts identical or related to transposons (Tn6628 and Tn6674), plasmids (pE035 and pWo27-9), and chromosomal regions. cfr environments showed identities with Tn6644-like transposon and a region from p12-2300 plasmid; cfr(D) genetic contexts were related to the corresponding region of the plasmid 4 of Enterococcus faecium E8014; poxtA was always found on Tn6657. Circular forms were obtained only for optrA- and poxtA-carrying genetic contexts. Clonality analysis revealed the presence of E. faecalis (ST16, ST27, ST476, and ST585) and E. faecium (ST21) clones previously isolated from humans. These results demonstrate a dissemination of linezolid resistance genes in enterococci of swine origin in Central Italy and confirm the spread of linezolid resistance in animal settings.

19.
Braz J Microbiol ; 51(4): 1607-1613, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32783169

ABSTRACT

A retrospective study of the epidemiology of vancomycin-resistant enterococci (VRE) in a regional hospital of central Italy in 2001-2018 demonstrated an increased VRE prevalence since 2016. A total of 113 VRE isolates, 89 E. faecium (VREfm) and 24 E. faecalis (VREfs), were collected in the study period. All strains showed high-level resistance to vancomycin; 107 also showed teicoplanin resistance. Altogether, 84 VREfm and 20 VREfs carried vanA, whereas 5 VREfm and 1 VREfs carried vanB. MLST analysis documented that 89 VREfm isolates mainly belonged to ST78, ST80, and ST117. Most strains were isolated from 2001 to 2007, ST78 being the predominant clone. VREfm re-emerged in 2016 with a prevalence of the ST80 lineage. Most VREfs were isolated from 2001 to 2006; although they belonged to 7 different STs, there was a prevalence of ST88 and ST6. Notably, ST88 was sporadically recovered throughout the study period. The increasing rate of VREfm isolation from 2016 to 2018 may be related to the influx of new successful clones and to the renewed and widespread use of vancomycin. Improved infection control measures in hospital wards should be adopted to limit the spread of new epidemic VRE strains.


Subject(s)
Cross Infection/microbiology , Enterococcus faecalis , Enterococcus faecium , Gram-Positive Bacterial Infections/microbiology , Vancomycin-Resistant Enterococci , Cross Infection/epidemiology , Enterococcus faecalis/classification , Enterococcus faecalis/isolation & purification , Enterococcus faecium/classification , Enterococcus faecium/isolation & purification , Gram-Positive Bacterial Infections/epidemiology , Humans , Infection Control/methods , Italy/epidemiology , Retrospective Studies , Vancomycin-Resistant Enterococci/classification , Vancomycin-Resistant Enterococci/isolation & purification
20.
Eur J Med Chem ; 189: 112072, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31991335

ABSTRACT

Pursuing the search for a new class of structurally simple mimics of antimicrobial peptides, we optimized a short, cheap and high-yielding synthesis of mono-charged amphiphilic α-hydrazido acid derivatives. The most active derivatives furnished MICs that are among the best values reported in literature for synthetic amphiphilic membranolytic compounds. They exhibited a broad-spectrum in vitro activity against a variety of Gram-positive and Gram-negative bacteria, including two multidrug-resistant strains. In spite of the minimal cationic charge, the best compounds demonstrated to be selective toward bacterial cell membranes over mammalian cell membranes. The relationship between either the antibacterial or the hemolytic activity and the overall lipophilicity furnished an easy way to individuate the best dimensional range for the hydrophobic portions. The importance of a non-disrupted amphiphilicity was also demonstrated. Considering the bioactivity profile and the ease of synthesis, these chemically and proteolitically stable hydrochlorides are suitable for development of a new class of wide-spectrum antibiotics.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Drug Design , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hydrazines/chemistry , Cations/chemistry , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...