Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 14(659): eabn9709, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36001680

ABSTRACT

Genetically engineered live Plasmodium falciparum sporozoites constitute a potential platform for creating consistently attenuated, genetically defined, whole-parasite vaccines against malaria through targeted gene deletions. Such genetically attenuated parasites (GAPs) do not require attenuation by irradiation or concomitant drug treatment. We previously developed a P. falciparum (Pf) GAP with deletions in P52, P36, and SAP1 genes (PfGAP3KO) and demonstrated its safety and immunogenicity in humans. Here, we further assessed safety, tolerability, and immunogenicity of the PfGAP3KO vaccine and tested its efficacy against controlled human malaria infection (CHMI) in malaria-naïve subjects. The vaccine was delivered by three (n = 6) or five (n = 8) immunizations with ~200 PfGAP3KO-infected mosquito bites per immunization. PfGAP3KO was safe and well tolerated with no breakthrough P. falciparum blood stage infections. Vaccine-related adverse events were predominately localized urticaria related to the numerous mosquito bites administered per vaccination. CHMI via bites with mosquitoes carrying fully infectious Pf NF54 parasites was carried out 1 month after the last immunization. Half of the study participants who received either three or five PfGAP3KO immunizations remained P. falciparum blood stage negative, as shown by a lack of detection of Plasmodium 18S rRNA in the blood for 28 days after CHMI. Six protected study participants received a second CHMI 6 months later, and one remained completely protected. Thus, the PfGAP3KO vaccine was safe and immunogenic and was capable of inducing protection against sporozoite infection. These results warrant further evaluation of PfGAP3KO vaccine efficacy in dose-range finding trials with an injectable formulation.


Subject(s)
Insect Bites and Stings , Malaria Vaccines , Malaria, Falciparum , Malaria , Parasites , Animals , Humans , Insect Bites and Stings/chemically induced , Malaria/prevention & control , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Sporozoites/genetics , Vaccines, Attenuated
2.
Sci Transl Med ; 9(371)2017 01 04.
Article in English | MEDLINE | ID: mdl-28053159

ABSTRACT

Immunization of humans with whole sporozoites confers complete, sterilizing immunity against malaria infection. However, achieving consistent safety while maintaining immunogenicity of whole parasite vaccines remains a formidable challenge. We generated a genetically attenuated Plasmodium falciparum (Pf) malaria parasite by deleting three genes expressed in the pre-erythrocytic stage (Pf p52-/p36-/sap1-). We then tested the safety and immunogenicity of the genetically engineered (Pf GAP3KO) sporozoites in human volunteers. Pf GAP3KO sporozoites were delivered to 10 volunteers using infected mosquito bites with a single exposure consisting of 150 to 200 bites per subject. All subjects remained blood stage-negative and developed inhibitory antibodies to sporozoites. GAP3KO rodent malaria parasites engendered complete, protracted immunity against infectious sporozoite challenge in mice. The results warrant further clinical testing of Pf GAP3KO and its potential development into a vaccine strain.


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Sporozoites/genetics , Adult , Animals , Antibodies, Protozoan/blood , Female , Gene Deletion , Genetic Engineering , Humans , Immunoglobulin G/blood , Malaria Vaccines/genetics , Male , Mice , Mice, Inbred BALB C , Middle Aged , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Sporozoites/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...