Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 29(18): 5367-5378, 2023 09.
Article in English | MEDLINE | ID: mdl-37431724

ABSTRACT

Improving rice nitrogen utilization efficiency (NUtE) is imperative to maximizing future food productivity while minimizing environmental threats, yet knowledge of its variation and the underlying regulatory factors is still lacking. Here, we integrated a dataset with 21,571 data compiled by available data from peer-reviewed literature and a large-scale field survey to address this knowledge gap. The overall results revealed great variations in rice NUtE, which were mainly associated with human activities, climate conditions, and rice variety. Specifically, N supply rate, temperature, and precipitation were the foremost determinants of rice NUtE, and NUtE responses to climatic change differed among rice varieties. Further prediction highlighted the improved rice NUtE with the increasing latitude or longitude. The indica and hybrid rice exhibited higher NUtE in low latitude regions compared to japonica and inbred rice, respectively. Collectively, our results evaluated the primary drivers of rice NUtE variations and predicted the geographic responses of NUtE in different varieties. Linking the global variations in rice NUtE with environmental factors and geographic adaptability provides valuable agronomic and ecological insights into the regulation of rice NUtE.


Subject(s)
Oryza , Humans , Oryza/genetics , Asia , Agriculture , Climate , Nitrogen
2.
Front Plant Sci ; 13: 955985, 2022.
Article in English | MEDLINE | ID: mdl-36092419

ABSTRACT

Wheat yields have plateaued in the UK over the last 25 years, during which time most arable land has been annually cropped continuously with short rotations dominated by cereals. Arable intensification has depleted soil organic matter and biology, including mycorrhizas, which are affected by tillage, herbicides, and crop genotype. Here, we test whether winter wheat yields, mycorrhization, and shoot health can be improved simply by adopting less intensive tillage and adding commercial mycorrhizal inoculum to long-term arable fields, or if 3-year grass-clover leys followed direct drilling is more effective for biological regeneration of soil with reduced N fertiliser. We report a trial of mycorrhization, ear pathology, and yield performance of the parents and four double haploid lines from the Avalon x Cadenza winter wheat population in a long-term arable field that is divided into replicated treatment plots. These plots comprised wheat lines grown using ploughing or disc cultivation for 3 years, half of which received annual additions of commercial arbuscular mycorrhizal (AM) inoculum, compared to 3-year mown grass-clover ley plots treated with glyphosate and direct-drilled. All plots annually received 35 kg of N ha-1 fertiliser without fungicides. The wheat lines did not differ in mycorrhization, which averaged only 34% and 40% of root length colonised (RLC) in the ploughed and disc-cultivated plots, respectively, and decreased with inoculation. In the ley, RLC increased to 52%. Two wheat lines were very susceptible to a sooty ear mould, which was lowest in the ley, and highest with disc cultivation. AM inoculation reduced ear infections by >50% in the susceptible lines. In the ley, yields ranged from 7.2 to 8.3 t ha-1, achieving 92 to 106% of UK average wheat yield in 2018 (7.8 t ha-1) but using only 25% of average N fertiliser. Yields with ploughing and disc cultivation averaged only 3.9 and 3.4 t ha-1, respectively, with AM inoculum reducing yields from 4.3 to 3.5 t ha-1 in ploughed plots, with no effect of disc cultivation. The findings reveal multiple benefits of reintegrating legume-rich leys into arable rotations as part of a strategy to regenerate soil quality and wheat crop health, reduce dependence on nitrogen fertilisers, enhance mycorrhization, and achieve good yields.

3.
Crit Rev Biotechnol ; 42(2): 254-270, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34167401

ABSTRACT

Potential future application of engineered gene drives (GDs), which bias their own inheritance and can spread genetic modifications in wild target populations, has sparked both enthusiasm and concern. Engineered GDs in insects could potentially be used to address long-standing challenges in control of disease vectors, agricultural pests and invasive species, or help to rescue endangered species, and thus provide important public benefits. However, there are concerns that the deliberate environmental release of GD modified insects may pose different or new harms to animal and human health and the wider environment, and raise novel challenges for risk assessment. Risk assessors, risk managers, developers, potential applicants and other stakeholders at many levels are currently discussing whether there is a need to develop new or additional risk assessment guidance for the environmental release of GD modified organisms, including insects. Developing new or additional guidance that is useful and practical is a challenge, especially at an international level, as risk assessors, risk managers and many other stakeholders have different, often contrasting, opinions and perspectives toward the environmental release of GD modified organisms, and on the adequacy of current risk assessment frameworks for such organisms. Here, we offer recommendations to overcome some of the challenges associated with the potential future development of new or additional risk assessment guidance for GD modified insects and provide considerations on areas where further risk assessment guidance may be required.


Subject(s)
Gene Drive Technology , Animals , Disease Vectors , Humans , Insecta/genetics , Introduced Species , Risk Assessment
4.
Trends Biotechnol ; 39(9): 853-856, 2021 09.
Article in English | MEDLINE | ID: mdl-33342557

ABSTRACT

Risk assessors, risk managers, developers, potential applicants, and other stakeholders at many levels discuss the need for new or further risk assessment guidance for deliberate environmental releases of gene drive-modified organisms. However, preparing useful and practical guidance entails challenges, to which we offer recommendations based on our experience drafting guidance.


Subject(s)
Gene Drive Technology , Guidelines as Topic , Organisms, Genetically Modified , Risk Assessment , Environment
5.
EFSA J ; 18(11): e06297, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33209154

ABSTRACT

Advances in molecular and synthetic biology are enabling the engineering of gene drives in insects for disease vector/pest control. Engineered gene drives (that bias their own inheritance) can be designed either to suppress interbreeding target populations or modify them with a new genotype. Depending on the engineered gene drive system, theoretically, a genetic modification of interest could spread through target populations and persist indefinitely, or be restricted in its spread or persistence. While research on engineered gene drives and their applications in insects is advancing at a fast pace, it will take several years for technological developments to move to practical applications for deliberate release into the environment. Some gene drive modified insects (GDMIs) have been tested experimentally in the laboratory, but none has been assessed in small-scale confined field trials or in open release trials as yet. There is concern that the deliberate release of GDMIs in the environment may have possible irreversible and unintended consequences. As a proactive measure, the European Food Safety Authority (EFSA) has been requested by the European Commission to review whether its previously published guidelines for the risk assessment of genetically modified animals (EFSA, 2012 and 2013), including insects (GMIs), are adequate and sufficient for GDMIs, primarily disease vectors, agricultural pests and invasive species, for deliberate release into the environment. Under this mandate, EFSA was not requested to develop risk assessment guidelines for GDMIs. In this Scientific Opinion, the Panel on Genetically Modified Organisms (GMO) concludes that EFSA's guidelines are adequate, but insufficient for the molecular characterisation (MC), environmental risk assessment (ERA) and post-market environmental monitoring (PMEM) of GDMIs. While the MC,ERA and PMEM of GDMIs can build on the existing risk assessment framework for GMIs that do not contain engineered gene drives, there are specific areas where further guidance is needed for GDMIs.

7.
PLoS One ; 10(8): e0135921, 2015.
Article in English | MEDLINE | ID: mdl-26309040

ABSTRACT

Organic farming, a low intensity system, may offer benefits for a range of taxa, but what affects the extent of those benefits is imperfectly understood. We explored the effects of organic farming and landscape on the activity density and species density of spiders and carabid beetles, using a large sample of paired organic and conventional farms in the UK. Spider activity density and species density were influenced by both farming system and surrounding landscape. Hunting spiders, which tend to have lower dispersal capabilities, had higher activity density, and more species were captured, on organic compared to conventional farms. There was also evidence for an interaction, as the farming system effect was particularly marked in the cropped area before harvest and was more pronounced in complex landscapes (those with little arable land). There was no evidence for any effect of farming system or landscape on web-building spiders (which include the linyphiids, many of which have high dispersal capabilities). For carabid beetles, the farming system effects were inconsistent. Before harvest, higher activity densities were observed in the crops on organic farms compared with conventional farms. After harvest, no difference was detected in the cropped area, but more carabids were captured on conventional compared to organic boundaries. Carabids were more species-dense in complex landscapes, and farming system did not affect this. There was little evidence that non-cropped habitat differences explained the farming system effects for either spiders or carabid beetles. For spiders, the farming system effects in the cropped area were probably largely attributable to differences in crop management; reduced inputs of pesticides (herbicides and insecticides) and fertilisers are possible influences, and there was some evidence for an effect of non-crop plant species richness on hunting spider activity density. The benefits of organic farming may be greatest for taxa with lower dispersal abilities generally. The evidence for interactions among landscape and farming system in their effects on spiders highlights the importance of developing strategies for managing farmland at the landscape-scale for most effective conservation of biodiversity.


Subject(s)
Biodiversity , Coleoptera/classification , Organic Agriculture/methods , Spiders/classification , Animals , Crops, Agricultural/growth & development , Ecosystem , Fertilizers , Geography , Herbicides/pharmacology , Humans , Insecticides/pharmacology , Population Density
8.
Proc Biol Sci ; 273(1601): 2659-65, 2006 Oct 22.
Article in English | MEDLINE | ID: mdl-17002952

ABSTRACT

Changing land use and the spread of 'winning' native or exotic plants are expected to lead to biotic homogenization (BH), in which previously distinct plant communities become progressively more similar. In parallel, many ecosystems have recently seen increases in local species (alpha-) diversity, yet gamma-diversity has continued to decline at larger scales. Using national ecological surveillance data for Great Britain, we quantify relationships between change in alpha-diversity and between-habitat homogenizations at two levels of organization: species composition and plant functional traits. Across Britain both increases and decreases in alpha-diversity were observed in small random sampling plots (10-200m2) located within a national random sample of 1km square regions. As alpha-diversity declined (spatially in 1978 or temporally between 1978 and 1998), plant communities became functionally more similar, but species-compositional similarity declined. Thus, different communities converged on a narrower range of winning trait syndromes, but species identities remained historically contingent, differentiating a mosaic of residual species-poor habitat patches within each 1km square. The reverse trends in beta-diversity occurred where alpha-diversity increased. When impacted by the same type and intensity of environmental change, directions of change in alpha-diversity are likely to depend upon differences in starting productivity and disturbance. This is one reason why local diversity change and BH across habitats are not likely to be consistently coupled.


Subject(s)
Biodiversity , Demography , Ecosystem , Plant Physiological Phenomena , Regression Analysis , Species Specificity , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...