Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1314533, 2023.
Article in English | MEDLINE | ID: mdl-38111629

ABSTRACT

The zoonotic malaria parasite Plasmodium knowlesi is an important public health concern in Southeast Asia. Invasion of host erythrocytes is essential for parasite growth, and thus, understanding the repertoire of parasite proteins that enable this process is vital for identifying vaccine candidates and how some species are able to cause zoonotic infection. Merozoite surface protein 1 (MSP1) is found in all malaria parasite species and is perhaps the most well-studied as a potential vaccine candidate. While MSP1 is encoded by a single gene in P. falciparum, all other human infective species (P. vivax, P. knowlesi, P. ovale, and P. malariae) additionally encode a divergent paralogue known as MSP1P, and little is known about its role or potential functional redundancy with MSP1. We, therefore, studied the function of P. knowlesi merozoite surface protein 1 paralog (PkMSP1P), using both recombinant protein and CRISPR-Cas9 genome editing. The recombinant 19-kDa C-terminus of PkMSP1P (PkMSP1P-19) was shown to bind specifically to human reticulocytes. However, immunoblotting data suggested that PkMSP1P-19-induced antibodies can recognize PkMSP1-19 and vice versa, confounding our ability to separate the properties of these two proteins. Targeted disruption of the pkmsp1p gene profoundly impacts parasite growth, demonstrating for the first time that PkMSP1P is important in in vitro growth of P. knowlesi and likely plays a distinct role from PkMSP1. Importantly, the MSP1P KO also enabled functional characterization of the PkMSP1P-19 antibodies, revealing clear immune cross-reactivity between the two paralogues, highlighting the vital importance of genetic studies in contextualizing recombinant protein studies.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Plasmodium knowlesi , Vaccines , Humans , Merozoite Surface Protein 1/genetics , Plasmodium knowlesi/genetics , Plasmodium knowlesi/metabolism , Malaria/parasitology , Erythrocytes/parasitology , Antibodies , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
Korean J Parasitol ; 59(2): 113-119, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33951766

ABSTRACT

The computer vision diagnostic approach currently generates several malaria diagnostic tools. It enhances the accessible and straightforward diagnostics that necessary for clinics and health centers in malaria-endemic areas. A new computer malaria diagnostics tool called the malaria scanner was used to investigate living malaria parasites with easy sample preparation, fast and user-friendly. The cultured Plasmodium parasites were used to confirm the sensitivity of this technique then compared to fluorescence-activated cell sorting (FACS) analysis and light microscopic examination. The measured percentage of parasitemia by the malaria scanner revealed higher precision than microscopy and was similar to FACS. The coefficients of variation of this technique were 1.2-6.7% for Plasmodium knowlesi and 0.3-4.8% for P. falciparum. It allowed determining parasitemia levels of 0.1% or higher, with coefficient of variation smaller than 10%. In terms of the precision range of parasitemia, both high and low ranges showed similar precision results. Pearson's correlation test was used to evaluate the correlation data coming from all methods. A strong correlation of measured parasitemia (r2=0.99, P<0.05) was observed between each method. The parasitemia analysis using this new diagnostic tool needs technical improvement, particularly in the differentiation of malaria species.


Subject(s)
Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Malaria/diagnosis , Plasmodium falciparum/chemistry , Plasmodium knowlesi/chemistry , Computers , Diagnostic Tests, Routine/instrumentation , Erythrocytes/chemistry , Erythrocytes/parasitology , Humans , Malaria/parasitology , Malaria, Falciparum/parasitology , Parasitemia/parasitology , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/physiology , Plasmodium knowlesi/isolation & purification , Plasmodium knowlesi/physiology
3.
PLoS Negl Trop Dis ; 14(6): e0008323, 2020 06.
Article in English | MEDLINE | ID: mdl-32559186

ABSTRACT

Malaria is caused by multiple different species of protozoan parasites, and interventions in the pre-elimination phase can lead to drastic changes in the proportion of each species causing malaria. In endemic areas, cross-reactivity may play an important role in the protection and blocking transmission. Thus, successful control of one species could lead to an increase in other parasite species. A few studies have reported cross-reactivity producing cross-immunity, but the extent of cross-reactive, particularly between closely related species, is poorly understood. P. vivax and P. knowlesi are particularly closely related species causing malaria infections in SE Asia, and whilst P. vivax cases are in decline, zoonotic P. knowlesi infections are rising in some areas. In this study, the cross-species reactivity and growth inhibition activity of P. vivax blood-stage antigen-specific antibodies against P. knowlesi parasites were investigated. Bioinformatics analysis, immunofluorescence assay, western blotting, protein microarray, and growth inhibition assay were performed to investigate the cross-reactivity. P. vivax blood-stage antigen-specific antibodies recognized the molecules located on the surface or released from apical organelles of P. knowlesi merozoites. Recombinant P. vivax and P. knowlesi proteins were also recognized by P. knowlesi- and P. vivax-infected patient antibodies, respectively. Immunoglobulin G against P. vivax antigens from both immune animals and human malaria patients inhibited the erythrocyte invasion by P. knowlesi. This study demonstrates that there is extensive cross-reactivity between antibodies against P. vivax to P. knowlesi in the blood stage, and these antibodies can potently inhibit in vitro invasion, highlighting the potential cross-protective immunity in endemic areas.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Cross Reactions , Malaria/immunology , Plasmodium knowlesi/immunology , Plasmodium vivax/immunology , Animals , Humans , Mice , Sequence Analysis, Protein
4.
J Biophotonics ; 13(8): e202000055, 2020 08.
Article in English | MEDLINE | ID: mdl-32441392

ABSTRACT

Toxoplasma gondii is an apicomplexan parasite that causes toxoplasmosis in the human body and commonly infects warm-blooded organisms. Pathophysiology of its diseases is still an interesting issue to be studied since T gondii can infect nearly all nucleated cells. Imaging techniques are crucial for studying its pathophysiology. In T gondii-infected cells structural and biochemical alterations occurred. To study that modification, we use digital holotomography to investigate the structure and biochemical alteration of single tachyzoite and its infected cells in a label-free and quantitative manner. Quantification analysis was done by measuring the refractive index distribution, which provides information about the concentration and dry mass of individual cells. This study showed that holotomography could be effectively used to identify the structural and biochemical alteration in tremendously different cells in supporting pathophysiological research in particular for T gondii-caused diseases.


Subject(s)
Parasites , Toxoplasma , Animals , Biophysics , Humans
5.
Korean J Parasitol ; 58(6): 609-617, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33412764

ABSTRACT

Plasmodium vivax reemerged in 1993. It has been sustained for more than 25 years and become one of the important indigenous parasitic diseases in northern and western parts of the Republic of Korea near the demilitarized zone. In particular, relapse is a significant concern for the control of malaria, as short- and long-term incubation periods vary among those infected in Korea. In this study, the prevalence of asymptomatic carriers was examined among residents of high endemic areas of vivax malaria during nonseasonal transmission of mosquitoes. Blood samples from 3 endemic regions in northwestern Korea were evaluated by microscopic examination, rapid diagnostic testing, and nested PCR to identify asymptomatic patients carrying malaria parasites in the community. However, no positive malaria case among residents of endemic areas was detected. Additionally, serological analysis was carried out to measure antibodies against 3 antigenic recombinant proteins of P. vivax, merozoite surface protein 1-19, circumsporozoite surface protein-VK210, and liver-stage antigen (PvLSA-N), by the protein array method. Interestingly, seropositivity of sera between previous exposure and samples without exposure to malaria was significantly higher using the PvLSA-N antigen than the other antigens, suggesting that PvLSA-N can be used as a serological marker to analyze the degree of exposure for malaria transmission in endemic areas. This indicates a very low asymptomatic carrier prevalence during the nonmalaria season in the endemic areas of Korea.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Carrier State/diagnosis , Carrier State/epidemiology , Endemic Diseases , Malaria, Vivax/diagnosis , Malaria, Vivax/epidemiology , Plasmodium vivax/immunology , Serologic Tests/methods , Biomarkers/blood , Endemic Diseases/prevention & control , Endemic Diseases/statistics & numerical data , Female , Humans , Malaria, Vivax/prevention & control , Male , Merozoite Surface Protein 1/immunology , Prevalence , Protozoan Proteins/immunology , Republic of Korea/epidemiology
6.
Malar J ; 17(1): 272, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30049277

ABSTRACT

BACKGROUND: The rapid process of malaria erythrocyte invasion involves ligand-receptor interactions. Inducing antibodies against specific ligands or receptors that abrogate the invasion process is a key challenge for blood stage vaccine development. However, few candidates were reported and remain to be validated for the discovery of new vaccine candidates in Plasmodium knowlesi. METHODS: In order to investigate the efficacy of pre-clinical vaccine candidates in P. knowlesi-infected human cases, this study describes an in vitro invasion inhibition assay, using a P. knowlesi strain adapted to in vitro growth in human erythrocytes, PkA1-H.1. Recombinant proteins of P. knowlesi Duffy binding protein alpha (PkDBPα) and apical membrane antigen 1 (PkAMA1) were produced in Escherichia coli system and rabbit antibodies were generated from immune animals. RESULTS: PkDBPα and PkAMA1 recombinant proteins were expressed as insoluble and produced as a functional refolded form for this study. Antibodies against PkDBPα and PkAMA1 specifically recognized recombinant proteins and native parasite proteins in schizont-stage parasites on the merozoite organelles. Single and combination of anti-PkDBPα and anti-PkAMA1 antibodies elicited strong growth inhibitory effects on the parasite in concentration-dependent manner. Meanwhile, IgG prevalence of PkDBPα and PkAMA1 were observed in 13.0 and 46.7% in human clinical patients, respectively. CONCLUSION: These data provide support for the validation of in vitro growth inhibition assay using antibodies of DBPα and AMA1 in human-adapted P. knowlesi parasite PkA1-H.1 strain.


Subject(s)
Antigens, Protozoan/immunology , Erythrocytes/parasitology , Membrane Proteins/immunology , Plasmodium knowlesi/immunology , Protozoan Proteins/immunology , Receptors, Cell Surface/immunology , Adult , Aged , Escherichia coli/genetics , Humans , Microorganisms, Genetically-Modified/genetics , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...