Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Eng Mater ; 2(4): 818-828, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38737588

ABSTRACT

Producing soft magnetic alloys by additive manufacturing has the potential to overcome cracking and brittle fracture issues associated with conventional thermomechanical processing. Fe-Co alloys exhibit high magnetic saturation but low ductility that makes them difficult to process by commercial methods. Ni-Fe alloys have good ductility and high permeability in comparison to Fe-Co, but they suffer from low magnetic saturation. Functional grading between Fe-Co and Ni-Fe alloys through blown powder directed energy deposition can produce soft magnetic materials that combine and enhance properties beyond the strengths of the individual magnetic materials. This work focuses on the microstructure, crystal structure, and magnetic properties of functionally graded Fe49Co49V2/Ni80Fe16Mo4 coupons. The grading between the two materials is found to refine the microstructure, thereby improving the mechanical hardness without the use of a nonmagnetic element. Postbuild thermal treatments are found to recrystallize the microstructure and increase the grain size, leading to improved magnetic properties. Analysis of crystal structures provides an understanding of the solubility limits and phase equilibria between the BCC (Fe-Co) and FCC (Ni-Fe) structures. Success in functional grading of soft magnets may provide a pathway toward improving energy conversion efficiency through strategic combinations of high saturation and high strength materials.

2.
Astrobiology ; 20(12): 1405-1412, 2020 12.
Article in English | MEDLINE | ID: mdl-32924535

ABSTRACT

Hydrothermal vents, which are highly plausible habitable environments for life and of interest for some origin-of-life scenarios, may exist on icy moons such as Europa or Enceladus in addition to Earth. Some hydrothermal vent chimney structures are extremely porous and friable, making their reconstruction in the lab challenging (e.g., brucite or saponite in alkaline hydrothermal settings). Here, we present the results from our efforts to reconstruct a simplified chimney structure directly out of mineral powder using binder jet additive manufacturing. Olivine sand was chosen for this initial method development effort since it represents a naturally occurring seafloor material and is inexpensively available in large quantities in powder form. The crystal structure of olivine used for the print was not modified during the process, as confirmed by powder X-ray diffraction (XRD). To characterize the microstructure of our 3D printed precipitates, we used computed tomography (CT) X-ray scan techniques. We also evaluated a chimney precipitate from a sample collected from the Prony Hydrothermal Field (PHF), southern New Caledonia, an alkaline system driven by serpentinization with mineralogy composed of brucite and carbonates. While not directly comparable from a mineralogical point of view, the microstructure and porosity of both precipitates was similar, suggesting that our 3D printing technique may be a valuable tool for future astrobiology research on hydrothermal vent precipitates.


Subject(s)
Hydrothermal Vents , Minerals/analysis , Earth, Planet , Exobiology , Hydrothermal Vents/chemistry , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...