Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11058, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745050

ABSTRACT

The present study assessed the effective use of biochar for the adsorption of two potent HAB toxins namely, Microcystin-LR (MCLR) and Saxitoxin (STX) through a combination of dosage, kinetic, equilibrium, initial pH, and competitive adsorption experiments. The adsorption results suggest that biochar has excellent capabilities for removing MCLR and STX, with STX reporting higher adsorption capacities (622.53-3507.46 µg/g). STX removal required a minimal dosage of 0.02 g/L, while MCLR removal needed 0.4 g/L for > 90%. Similarly, a shorter contact time was required for STX removal compared to MCLR for > 90% of toxin removed from water. Initial pH study revealed that for MCLR acidic conditions favored higher uptake while STX favored basic conditions. Kinetic studies revealed that the Elovich model to be most suitable for both toxins, while STX also showed suitable fittings for Pseudo-First Order and Pseudo-Second Order in individual toxin systems. Similarly, for the Elovich model the most suited kinetic model for both toxins in presence of each other. Isotherm studies confirmed the Langmuir-Freundlich model as the best fit for both toxins. These results suggest adsorption mechanisms including pore filling, hydrogen bonding, π-π interactions, hydrophobic interactions, electrostatic attraction, and dispersive interactions.


Subject(s)
Charcoal , Marine Toxins , Microcystins , Saxitoxin , Water Purification , Microcystins/chemistry , Microcystins/isolation & purification , Charcoal/chemistry , Saxitoxin/chemistry , Marine Toxins/chemistry , Adsorption , Kinetics , Water Purification/methods , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
2.
Sci Total Environ ; 857(Pt 3): 159602, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36272472

ABSTRACT

Florida's Indian River Lagoon (IRL) has experienced large-scale, frequent blooms of toxic harmful algae in recent decades. Sentinel, or indicator, species can provide an integrated picture of contaminants in the environment and may be useful to understanding phycotoxin prevalence in the IRL. This study evaluated the presence of phycotoxins in the IRL ecosystem by using the bull shark (Carcharhinus leucas) as a sentinel species. Concentrations of phycotoxins were measured in samples collected from 50 immature bull sharks captured in the IRL between 2018 and 2020. Ultra-performance liquid chromatography/tandem mass spectrometry was used to measure toxins in shark gut contents, plasma, and liver. Analysis of samples (n = 123) demonstrated the presence of multiple phycotoxins (microcystin, nodularin, teleocidin, cylindrospermopsin, domoic acid, okadaic acid, and brevetoxin) in 82 % of sampled bull sharks. However, most detected toxins were in low prevalence (≤25 % of samples, per sample type). This study provides valuable baseline information on presence of multiple phycotoxins in a species occupying a high trophic position in this estuary of national significance.


Subject(s)
Estuaries , Sharks , Animals , Ecosystem , Rivers
3.
Harmful Algae ; 103: 102000, 2021 03.
Article in English | MEDLINE | ID: mdl-33980440

ABSTRACT

Published baseline data on biotoxin exposure in cetaceans is sparse but critical for interpreting mortality events as harmful algal blooms increase in frequency and duration. We present the first synthesis of domoic acid (DA), saxitoxin (STX), okadaic acid (OA), and microcystin detections in the feces and urine of stranded and bycaught southern California cetaceans, over an 18 year period (2001-2018), along with corresponding stomach content data. DA was detected in 13 out of 19 cetacean species, most often in harbor porpoise (Phocoena phocoena) (81.8%, n = 22) and long-beaked common dolphins (Delphinus delphis bairdii) (74%, n = 231). Maximum DA concentrations of 324,000 ng/g in feces and 271, 967 ng/ml in urine were observed in D. d. bairdii. DA was detected more frequently and at higher concentrations in male vs. female D. d. bairdii. Higher fecal DA concentrations in D. d. bairdii were associated with a greater proportion of northern anchovy (Engraulis mordax) in the diet, indicating it may be a primary vector of DA. Fecal DA concentrations for D. d. bairdii off Point Conception were greater than those from animals sampled off Los Angeles and San Diego counties, reflecting greater primary productivity and higher Pseudo-nitzschia spp. abundance in that region and a greater abundance of E. mordax in the diet. STX was detected at low levels (fecal max = 7.5 ng/g, urine max = 17 ng/ml) in 3.6% (n = 165) of individuals from 3 out of 11 species. The occurrence of E. mordax in 100% of the 3 examined stomachs suggests this species could be a primary vector of the detected STX. OA was detected in 2.4% of tested individuals (n = 85) at a maximum fecal concentration of 422.8 ng/g. Microcystin was detected in 14.3% (n = 7) of tested individuals with a maximum liver concentration of 96.8 ppb.


Subject(s)
Environmental Monitoring , Saxitoxin , Animals , California , Cetacea , Harmful Algal Bloom , Saxitoxin/analysis
4.
PLoS One ; 16(1): e0243570, 2021.
Article in English | MEDLINE | ID: mdl-33406141

ABSTRACT

Despite a long-documented history of severe harmful algal blooms (HABs) in New England coastal waters, corresponding HAB-associated marine mammal mortality events in this region are far less frequent or severe relative to other regions where HABs are common. This long-term survey of the HAB toxins saxitoxin (STX) and domoic acid (DA) demonstrates significant and widespread exposure of these toxins in New England marine mammals, across multiple geographic, temporal and taxonomic groups. Overall, 19% of the 458 animals tested positive for one or more toxins, with 15% and 7% testing positive for STX and DA, respectively. 74% of the 23 different species analyzed demonstrated evidence of toxin exposure. STX was most prevalent in Maine coastal waters, most frequently detected in common dolphins (Delphinus delphis), and most often detected during July and October. DA was most prevalent in animals sampled in offshore locations and in bycaught animals, and most frequently detected in mysticetes, with humpback whales (Megaptera novaeangliae) testing positive at the highest rates. Feces and urine appeared to be the sample matrices most useful for determining the presence of toxins in an exposed animal, with feces samples having the highest concentrations of STX or DA. No relationship was found between the bloom season of toxin-producing phytoplankton and toxin detection rates, however STX was more likely to be present in July and October. No relationship between marine mammal dietary preference and frequency of toxin detection was observed. These findings are an important part of a framework for assessing future marine mammal morbidity and mortality events, as well as monitoring ecosystem health using marine mammals as sentinel organisms for predicting coastal ocean changes.


Subject(s)
Ecosystem , Environmental Exposure/analysis , Harmful Algal Bloom , Mammals/metabolism , Animals , Feces/chemistry , Geography , Kainic Acid/analogs & derivatives , Kainic Acid/analysis , New England , Saxitoxin/analysis , Time Factors
5.
Mar Environ Res ; 162: 105191, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33075734

ABSTRACT

Harmful algal blooms produced by the phytoplankton species Karenia brevis and its associated neurotoxin, brevetoxin (PbTx), occur throughout the Gulf of Mexico and have had devastating impacts on co-occurring populations of bottlenose dolphins (Tursiops truncatus), an important marine sentinel species. The majority of documented impacts, however, are from the eastern Gulf of Mexico, with a critical lack of information on the degree and frequency of PbTx exposure in bottlenose dolphins from Texas coastal waters. This study documents PbTx exposure in Texas bottlenose dolphins between 2007 and 2017 and their association with co-occurring K. brevis blooms. PbTx was detected in 60% (n = 112) of the animals tested. Liver tissue samples had the highest frequency of detection (62%), followed by feces (41.4%) and gastric contents (30.4%). PbTx was not detected in urine or intestinal tissue. The concentration ranges of PbTx detected in feces (1.2-216, mean 38.4 ng/g), gastric contents (3.3-1016, mean 158 ng/g) and liver (0.6-52.4, mean 8.5 ng/g) samples were an order of magnitude less than values reported for Florida dolphins for the same sample types. The proportion of dolphins recovered within 4 weeks of a bloom that tested positive for PbTx ('Bloom' group; 75%) was significantly higher compared to those that were recovered 5-8 weeks after termination of a bloom ('Post-Bloom' group; 36%; p = 0.004). The proportion of PbTx-positive animals with no observed bloom association ('Baseline' group; 60%) was also significantly greater than the Post-Bloom group (p = 0.012). No significant difference in proportion of PbTx-positive animals was detected between Bloom and Baseline groups (p = 0.242). No significant differences in liver PbTx concentrations were observed between any pairwise combinations of the 3 exposure groups (p = 0.261). Overall, these findings suggest persistent PbTx exposure for many individuals in these populations, although the health impacts of such exposure are not known.


Subject(s)
Bottle-Nosed Dolphin , Dinoflagellida , Animals , Florida , Gulf of Mexico , Harmful Algal Bloom , Humans , Neurotoxins , Texas
6.
Heliyon ; 6(3): e03525, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32181395

ABSTRACT

Harmful algal blooms (HABs) such as those produced by Karenia brevis have acute negative impacts on common bottlenose dolphins (Tursiops truncatus) in Florida coastal waters, frequently causing illness and death. However, much less is known about chronic, sub-acute effects on these important sentinel species. This study investigates whether bottlenose dolphin behavior in Sarasota Bay, Florida is influenced by the presence of severe red tide events, focusing on respiratory and other behaviors likely affected by abundant toxin aerosols produced during these blooms. Through focal animal behavioral follows, we observed free-ranging dolphin respiratory behavior, activity budgets, and movement patterns relative to K. brevis abundance in the study area. We compared behavior from dolphins observed during a 2005 K. brevis bloom to those observed during inter-bloom conditions where K. brevis was present at background concentrations. We found that the rate of "chuffing", an explosive type of exhalation, was significantly greater in dolphins observed during the bloom. No apparent effect on respiratory rate, heading change rate or activity budgets was observed. We propose that this chuffing behavior is analogous to symptoms of respiratory irritation observed in humans exposed to such red tide events, and suggest that this may be a type of disturbance response. With an observed increase in both the frequency and severity of HABs, such disturbance responses may have large-scale chronic impacts to the health and fitness of bottlenose dolphins in regions where such HABs are common.

7.
Aquat Toxicol ; 218: 105371, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31790939

ABSTRACT

Harmful algal bloom (HAB) toxins have severe negative impacts on marine mammals, particularly for Florida bottlenose dolphins (Tursiops truncatus) which frequently experience mass mortality events. Dolphins on the Florida Atlantic coast inhabit a region endemic to two HAB species, Karenia brevis and Pyrodinium bahamense, which produce the neurotoxins brevetoxin (PbTx) and saxitoxin (STX), respectively. Although toxic HABs and associated dolphin mortality events have been reported from this region, there is a lack of available data necessary for comparing toxin exposure levels between bloom ('exposed') conditions and non-bloom ('baseline') conditions. Here we present a 10-year dataset of PbTx and STX concentrations detected in dolphins stranding in this region, and compare the toxin loads from HAB-exposed dolphins to those detected in dolphins recovered in the absence of a HAB. We analyzed liver tissue samples from dead-stranded dolphins (n = 119) recovered and necropsied between 2002-2011, using an enzyme-linked immunosorbent assay (ELISA) modified for use with mammalian tissues. For dolphins recovered during baseline conditions, toxin-positive samples ranged in concentration from 0.27 to 1.2 ng/g for PbTx and from 0.41 to 1.9 ng/g for STX. For K. brevis-exposed dolphins, concentrations of up to 12.1 ng PbTx/g were detected, and for P. bahamense-exposed dolphins, concentrations of up to 9.9 ng STX/g were detected. Baseline PbTx values were similar to those reported in other regions where K. brevis blooms are more frequent and severe, but HAB-exposed PbTx values were considerably lower relative to these other regions. Since no baseline STX dolphin data exist for any region, our data serve as a first step towards establishing reference STX values for potential dolphin mortality events associated with STX-producing blooms in the future. This study demonstrates that although HABs in eastern Florida are only infrequently associated with dolphin mortalities, the presence of toxins in these animals may pose significant health risks in this region.


Subject(s)
Bottle-Nosed Dolphin/metabolism , Environmental Monitoring/methods , Harmful Algal Bloom , Marine Toxins/analysis , Oxocins/analysis , Saxitoxin/analysis , Water Pollutants, Chemical/analysis , Animals , Dinoflagellida/growth & development , Enzyme-Linked Immunosorbent Assay , Florida , Liver/chemistry , Liver/metabolism , Marine Toxins/toxicity , Oxocins/toxicity , Rivers/chemistry , Saxitoxin/toxicity , Water Pollutants, Chemical/toxicity
8.
Harmful Algae ; 51: 89-96, 2016 Jan.
Article in English | MEDLINE | ID: mdl-28003064

ABSTRACT

Several marine mammal epizootics have been closely linked to infectious diseases, as well as to the biotoxins produced by harmful algal blooms (HABs). In two of three saxitoxin (STX) associated mortality events, dolphin morbillivirus (DMV) or phocine distemper virus (PDV) was isolated in affected individuals. While STX is notorious for its neurotoxicity, immunotoxic effects have also been described. This study investigated the role of STX in altering immune function, specifically T lymphocyte proliferation, in harbor seals (Phoca vitulina concolor) upon in-vitro exposure. In addition, the study also examined whether exposure to STX could alter the susceptibility of harbor seal immune cells to PDV infection upon in-vitro exposure. STX caused an increase in harbor seal lymphocyte proliferation at 10ppb and exposure to STX significantly increased the amount of virus present in lymphocytes. These results suggest that low levels of STX within the range of those reported in northeast U.S. seals may affect the likelihood of systemic PDV infection upon in-vivo exposure in susceptible seals. Given the concurrent increase in morbillivirus epizootics and HAB events in the last 25 years, the relationship between low level toxin exposure and host susceptibility to morbillivirus needs to be further explored.

9.
Dis Aquat Organ ; 119(1): 1-16, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27068499

ABSTRACT

An unusual mortality event (UME) involving primarily common bottlenose dolphins Tursiops truncatus of all size classes stranding along coastal Louisiana, Mississippi, and Alabama, USA, started in early 2010 and continued into 2014. During this northern Gulf of Mexico UME, a distinct cluster of perinatal dolphins (total body length <115 cm) stranded in Mississippi and Alabama during 2011. The proportion of annual dolphin strandings that were perinates between 2009 and 2013 were compared to baseline strandings (2000-2005). A case-reference study was conducted to compare demographics, histologic lesions, and Brucella sp. infection prevalence in 69 UME perinatal dolphins to findings from 26 reference perinates stranded in South Carolina and Florida outside of the UME area. Compared to reference perinates, UME perinates were more likely to have died in utero or very soon after birth (presence of atelectasis in 88 vs. 15%, p < 0.0001), have fetal distress (87 vs. 27%, p < 0.0001), and have pneumonia not associated with lungworm infection (65 vs. 19%, p = 0.0001). The percentage of perinates with Brucella sp. infections identified via lung PCR was higher among UME perinates stranding in Mississippi and Alabama compared to reference perinates (61 vs. 24%, p = 0.01), and multiple different Brucella omp genetic sequences were identified in UME perinates. These results support that from 2011 to 2013, during the northern Gulf of Mexico UME, bottlenose dolphins were particularly susceptible to late-term pregnancy failures and development of in utero infections including brucellosis.


Subject(s)
Bottle-Nosed Dolphin , Fetal Distress/veterinary , Pneumonia/veterinary , Animals , Brucella/genetics , Brucella/isolation & purification , Brucellosis/epidemiology , Brucellosis/microbiology , Brucellosis/veterinary , Environment , Female , Fetal Distress/epidemiology , Fetal Distress/pathology , Gulf of Mexico/epidemiology , Morbillivirus/isolation & purification , Morbillivirus Infections/epidemiology , Morbillivirus Infections/veterinary , Morbillivirus Infections/virology , Phylogeny , Pneumonia/epidemiology , Pneumonia/microbiology , Pneumonia/pathology , Pregnancy
10.
PLoS One ; 10(5): e0126538, 2015.
Article in English | MEDLINE | ID: mdl-25992681

ABSTRACT

A northern Gulf of Mexico (GoM) cetacean unusual mortality event (UME) involving primarily bottlenose dolphins (Tursiops truncatus) in Louisiana, Mississippi, and Alabama began in February 2010 and continued into 2014. Overlapping in time and space with this UME was the Deepwater Horizon (DWH) oil spill, which was proposed as a contributing cause of adrenal disease, lung disease, and poor health in live dolphins examined during 2011 in Barataria Bay, Louisiana. To assess potential contributing factors and causes of deaths for stranded UME dolphins from June 2010 through December 2012, lung and adrenal gland tissues were histologically evaluated from 46 fresh dead non-perinatal carcasses that stranded in Louisiana (including 22 from Barataria Bay), Mississippi, and Alabama. UME dolphins were tested for evidence of biotoxicosis, morbillivirus infection, and brucellosis. Results were compared to up to 106 fresh dead stranded dolphins from outside the UME area or prior to the DWH spill. UME dolphins were more likely to have primary bacterial pneumonia (22% compared to 2% in non-UME dolphins, P = .003) and thin adrenal cortices (33% compared to 7% in non-UME dolphins, P = .003). In 70% of UME dolphins with primary bacterial pneumonia, the condition either caused or contributed significantly to death. Brucellosis and morbillivirus infections were detected in 7% and 11% of UME dolphins, respectively, and biotoxin levels were low or below the detection limit, indicating that these were not primary causes of the current UME. The rare, life-threatening, and chronic adrenal gland and lung diseases identified in stranded UME dolphins are consistent with exposure to petroleum compounds as seen in other mammals. Exposure of dolphins to elevated petroleum compounds present in coastal GoM waters during and after the DWH oil spill is proposed as a cause of adrenal and lung disease and as a contributor to increased dolphin deaths.


Subject(s)
Adrenal Gland Diseases/mortality , Adrenal Glands/pathology , Bottle-Nosed Dolphin , Brucellosis/mortality , Lung/pathology , Petroleum Pollution/adverse effects , Pneumonia, Bacterial/mortality , Adrenal Gland Diseases/etiology , Adrenal Gland Diseases/pathology , Animals , Bottle-Nosed Dolphin/microbiology , Bottle-Nosed Dolphin/virology , Brucellosis/etiology , Brucellosis/microbiology , Brucellosis/pathology , Female , Gulf of Mexico , Louisiana , Male , Morbillivirus Infections/etiology , Morbillivirus Infections/mortality , Morbillivirus Infections/pathology , Morbillivirus Infections/virology , Mortality , Pneumonia, Bacterial/etiology , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/pathology
11.
Dis Aquat Organ ; 112(2): 161-75, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25449327

ABSTRACT

An unusual mortality event (UME) was declared for cetaceans in the northern Gulf of Mexico (GoM) for Franklin County, Florida, west through Louisiana, USA, beginning in February 2010 and was ongoing as of September 2014. The 'Deepwater Horizon' (DWH) oil spill began on 20 April 2010 in the GoM, raising questions regarding the potential role of the oil spill in the UME. The present study reviews cetacean mortality events that occurred in the GoM prior to 2010 (n = 11), including causes, durations, and some specific test results, to provide a historical context for the current event. The average duration of GoM cetacean UMEs prior to 2010 was 6 mo, and the longest was 17 mo (2005-2006). The highest number of cetacean mortalities recorded during a previous GoM event was 344 (in 1990). In most previous events, dolphin morbillivirus or brevetoxicosis was confirmed or suspected as a causal factor. In contrast, the current northern GoM UME has lasted more than 48 mo and has had more than 1000 reported mortalities within the currently defined spatial and temporal boundaries of the event. Initial results from the current UME do not support either morbillivirus or brevetoxin as primary causes of this event. This review is the first summary of cetacean UMEs in the GoM and provides evidence that the most common causes of previous UMEs are unlikely to be associated with the current UME.


Subject(s)
Cetacea , Environmental Monitoring/methods , Animals , Ecosystem , Gulf of Mexico
12.
PLoS One ; 7(8): e42974, 2012.
Article in English | MEDLINE | ID: mdl-22916189

ABSTRACT

In the Florida Panhandle region, bottlenose dolphins (Tursiops truncatus) have been highly susceptible to large-scale unusual mortality events (UMEs) that may have been the result of exposure to blooms of the dinoflagellate Karenia brevis and its neurotoxin, brevetoxin (PbTx). Between 1999 and 2006, three bottlenose dolphin UMEs occurred in the Florida Panhandle region. The primary objective of this study was to determine if these mortality events were due to brevetoxicosis. Analysis of over 850 samples from 105 bottlenose dolphins and associated prey items were analyzed for algal toxins and have provided details on tissue distribution, pathways of trophic transfer, and spatial-temporal trends for each mortality event. In 1999/2000, 152 dolphins died following extensive K. brevis blooms and brevetoxin was detected in 52% of animals tested at concentrations up to 500 ng/g. In 2004, 105 bottlenose dolphins died in the absence of an identifiable K. brevis bloom; however, 100% of the tested animals were positive for brevetoxin at concentrations up to 29,126 ng/mL. Dolphin stomach contents frequently consisted of brevetoxin-contaminated menhaden. In addition, another potentially toxigenic algal species, Pseudo-nitzschia, was present and low levels of the neurotoxin domoic acid (DA) were detected in nearly all tested animals (89%). In 2005/2006, 90 bottlenose dolphins died that were initially coincident with high densities of K. brevis. Most (93%) of the tested animals were positive for brevetoxin at concentrations up to 2,724 ng/mL. No DA was detected in these animals despite the presence of an intense DA-producing Pseudo-nitzschia bloom. In contrast to the absence or very low levels of brevetoxins measured in live dolphins, and those stranding in the absence of a K. brevis bloom, these data, taken together with the absence of any other obvious pathology, provide strong evidence that brevetoxin was the causative agent involved in these bottlenose dolphin mortality events.


Subject(s)
Bottle-Nosed Dolphin/metabolism , Marine Toxins/metabolism , Marine Toxins/toxicity , Oxocins/metabolism , Oxocins/toxicity , Animals , Environmental Exposure/adverse effects , Environmental Monitoring , Female , Florida , Kainic Acid/analogs & derivatives , Kainic Acid/metabolism , Kainic Acid/toxicity , Kidney/metabolism , Liver/metabolism , Male
13.
J AOAC Int ; 95(3): 795-812, 2012.
Article in English | MEDLINE | ID: mdl-22816272

ABSTRACT

A collaborative study was conducted on a microplate format receptor binding assay (RBA) for paralytic e shellfish toxins (PST). The assay quantifies the composite PST toxicity in shellfish samples based on the ability of sample extracts to compete with (3)H saxitoxin (STX) diHCl for binding to voltage-gated sodium channels in a rat brain membrane preparation. Quantification of binding can be carried out using either a microplate or traditional scintillation counter; both end points were included in this study. Nine laboratories from six countries completed the study. One laboratory analyzed the samples using the precolumn oxidation HPLC method (AOAC Method 2005.06) to determine the STX congener composition. Three laboratories performed the mouse bioassay (AOAC Method 959.08). The study focused on the ability of the assay to measure the PST toxicity of samples below, near, or slightly above the regulatory limit of 800 (microg STX diHCl equiv./kg). A total of 21 shellfish homogenates were extracted in 0.1 M HCl, and the extracts were analyzed by RBA in three assays on separate days. Samples included naturally contaminated shellfish samples of different species collected from several geographic regions, which contained varying STX congener profiles due to their exposure to different PST-producing dinoflagellate species or differences in toxin metabolism: blue mussel (Mytilus edulis) from the U.S. east and west coasts, California mussel (Mytilus californianus) from the U.S. west coast, chorito mussel (Mytilus chiliensis) from Chile, green mussel (Perna canaliculus) from New Zealand, Atlantic surf clam (Spisula solidissima) from the U.S. east coast, butter clam (Saxidomus gigantea) from the west coast of the United States, almeja clam (Venus antiqua) from Chile, and Atlantic sea scallop (Plactopecten magellanicus) from the U.S. east coast. All samples were provided as whole animal homogenates, except Atlantic sea scallop and green mussel, from which only the hepatopancreas was homogenized. Among the naturally contaminated samples, five were blind duplicates used for calculation of RSDr. The interlaboratory RSDR of the assay for 21 samples tested in nine laboratories was 33.1%, yielding a HorRat value of 2.0. Removal of results for one laboratory that reported systematically low values resulted in an average RSDR of 28.7% and average HorRat value of 1.8. Intralaboratory RSDr based on five blind duplicate samples tested in separate assays, was 25.1%. RSDr obtained by individual laboratories ranged from 11.8 to 34.9%. Laboratories that are routine users of the assay performed better than nonroutine users, with an average RSDr of 17.1%. Recovery of STX from spiked shellfish homogenates was 88.1-93.3%. Correlation with the mouse bioassay yielded a slope of 1.64 and correlation coefficient (r(2)) of 0.84, while correlation with the precolumn oxidation HPLC method yielded a slope of 1.20 and an r(2) of 0.92. When samples were sorted according to increasing toxin concentration (microg STX diHCl equiv./kg) as assessed by the mouse bioassay, the RBA returned no false negatives relative to the 800 microg STX diHCl equiv./kg regulatory limit for shellfish. Currently, no validated methods other than the mouse bioassay directly measure a composite toxic potency for PST in shellfish. The results of this interlaboratory study demonstrate that the RBA is suitable for the routine determination of PST in shellfish in appropriately equipped laboratories.


Subject(s)
Marine Toxins/analysis , Shellfish/analysis , Animals , Biological Assay , Chromatography, High Pressure Liquid , Cooperative Behavior , Limit of Detection , Mice , Rats , Reproducibility of Results , Saxitoxin/analysis , Shellfish Poisoning/etiology
14.
Anal Chim Acta ; 715: 71-9, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22244169

ABSTRACT

We previously reported a solid-phase extraction (SPE) method for determination of the neurotoxin domoic acid (DA) in both seawater and phytoplankton by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with the purpose of sample desalting without DA pre-concentration. In the present study, we optimized the SPE procedure with seawater and phytoplankton samples directly acidified with aqueous formic acid without addition of organic solvents, which allowed sample desalting and also 20-fold pre-concentration of DA in seawater and phytoplankton samples. In order to reduce MS contamination, a diverter valve was installed between LC and MS to send the LC eluant to waste, except for the 6-min elution window bracketing the DA retention time, which was sent to the MS. Reduction of the MS turbo gas temperature also helped to maintain the long-term stability of MS signal. Recoveries exceeded 90% for the DA-negative seawater and the DA-positive cultured phytoplankton samples spiked with DA. The SPE method for DA extraction and sample clean-up in seawater was extended to mammalian fluids and tissues with modification in order to accommodate the fluid samples with limited available volumes and the tissue extracts in aqueous methanol. Recoveries of DA from DA-exposed laboratory mammalian samples (amniotic fluid, cerebrospinal fluid, plasma, placenta, and brain) were above 85%. Recoveries of DA from samples (urine, feces, intestinal contents, and gastric contents) collected from field stranded marine mammals showed large variations and were affected by the sample status. The optimized SPE-LC-MS method allows determination of DA at trace levels (low pg mL(-1)) in seawater with/without the presence of phytoplankton. The application of SPE clean-up to mammalian fluids and tissue extracts greatly reduced the LC column degradation and MS contamination, which allowed routine screening of marine mammalian samples for confirmation of DA exposure and determination of fluid and tissue DA concentrations in experimental laboratory animals.


Subject(s)
Chromatography, High Pressure Liquid/methods , Kainic Acid/analogs & derivatives , Marine Toxins/analysis , Phytoplankton/chemistry , Seawater/chemistry , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Amniotic Fluid/chemistry , Animals , Body Fluids/chemistry , Dolphins/urine , Feces/chemistry , Female , Kainic Acid/analysis , Rats , Rats, Sprague-Dawley , Sea Lions/urine , Sensitivity and Specificity , Whales/urine
15.
PLoS One ; 6(3): e17394, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21423740

ABSTRACT

Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000-2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health.


Subject(s)
Bottle-Nosed Dolphin/metabolism , Environmental Exposure/analysis , Environmental Monitoring , Kainic Acid/analogs & derivatives , Marine Toxins/toxicity , Oxocins/toxicity , Animals , Bottle-Nosed Dolphin/blood , Bottle-Nosed Dolphin/urine , Cell Count , Dinoflagellida/cytology , Dinoflagellida/drug effects , Eosinophils/cytology , Eosinophils/drug effects , Feces , Fishes/metabolism , Florida , Geography , Health , Kainic Acid/toxicity , Linear Models , Oceans and Seas , Snails/drug effects , Snails/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...