Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37754107

ABSTRACT

A sensitive electrochemical immunosensor for the detection of the heart-type fatty acid binding protein (HFABP), an earlier biomarker for acute myocardial infarction than Troponins, is described. The sensing platform was enhanced with methylene blue (MB) redox coupled to carbon nanotubes (CNT) assembled on a polymer film of polythionine (PTh). For this strategy, monomers of thionine rich in amine groups were electrosynthesized by cyclic voltammetry on the immunosensor's gold surface, forming an electroactive film with excellent electron transfer capacity. Stepwise sensor surface preparation was electrochemically characterized at each step and scanning electronic microscopy was carried out showing all the preparation steps. The assembled sensor platform combines MB and PTh in a synergism, allowing sensitive detection of the H-FABP in a linear response from 3.0 to 25.0 ng∙mL-1 with a limit of detection of 1.47 ng∙mL-1 HFABP that is similar to the clinical level range for diagnostics. H-FABP is a newer powerful biomarker for distinguishing between unstable angina and acute myocardial infarction.

2.
Analyst ; 139(20): 5200-8, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25222288

ABSTRACT

A label-free electrochemical immunosensor based on an ionic organic molecule ((E)-4-[(4-decyloxyphenyl)diazenyl]-1-methylpyridinium iodide) and chitosan-stabilized gold nanoparticles (CTS-AuNPs) was developed for the detection of cardiac troponin T (cTnT). The new ionic organic molecule was strategically employed as a redox probe, and CTS-AuNPs were applied as a "green" platform for the immobilization of the monoclonal anti-cTnT antibody, for the construction of the immunosensor. The characterization of the proposed immunosensor was carried out by employing cyclic and square-wave voltammetry and electron microscopy. The film of ionic organic molecules acts as a redox probe and from its electrochemical response the presence of cTnT antigens, which interact specifically with the anti-cTnT antibody immobilized on the surface of the immunosensor, can be detected. This interaction results in a decrease in the analytical signal, which is proportional to the amount of cTnT antigens present in the sample analyzed. Under optimized conditions, using square-wave voltammetry (a frequency of 100 Hz, an amplitude of 100 mV and an increment of 8 mV) and an incubation time of 10 min, the proposed immunosensor showed linearity in the range of 0.20 to 1.00 ng mL(-1) cTnT, with a calculated limit of detection of 0.10 ng mL(-1). The proposed immunosensor shows some advantages when compared to other sensors reported in the literature, especially with regard to the detection limit and the time of incubation. A study of the interday precision (n = 8) showed a coefficient of variation of 3.33%. The potential interference of some compounds (glucose, ascorbic acid, albumin, uric acid, creatine, and creatinine) on the response of the immunosensor was evaluated and the inhibition of the immunosensor response was found to be less than 8.0%. The immunosensor was successfully used for the determination of cTnT in samples of simulated blood serum with a relative error of <13.0%. Furthermore, the proposed methodology provides a working range that allows the detection of cTnT antigens at levels below the cutoff value used for the diagnosis of acute myocardial infarction and was also found to be faster than the conventional methods.


Subject(s)
Biosensing Techniques/methods , Chitosan/chemistry , Electrochemical Techniques , Gold/chemistry , Metal Nanoparticles/chemistry , Troponin T/analysis , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Antibodies, Monoclonal/immunology , Humans , Hydrogen-Ion Concentration , Myocardium/metabolism , Pyridinium Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...