Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
ISME J ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832716

ABSTRACT

Soil microbial communities perform critical ecosystem services through the collective metabolic activities of numerous individual organisms. Most microbes use corrinoids, a structurally diverse family of cofactors related to vitamin B12. Corrinoid structure influences the growth of individual microbes, yet how these growth responses scale to the community level remains unknown. Analysis of metagenome-assembled genomes suggests corrinoids are supplied to the community by members of the archaeal and bacterial phyla Thermoproteota, Actinobacteria, and Proteobacteria. Corrinoids were found largely adhered to the soil matrix in a grassland soil, at levels exceeding those required by cultured bacteria. Enrichment cultures and soil microcosms seeded with different corrinoids showed distinct shifts in bacterial community composition, supporting the hypothesis that corrinoid structure can shape communities. Environmental context influenced both community and taxon-specific responses to specific corrinoids. These results implicate corrinoids as key determinants of soil microbiome structure and suggest that environmental micronutrient reservoirs promote community stability.

2.
Microbiol Resour Announc ; 13(6): e0032224, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38771040

ABSTRACT

When very dry soil is rewet, rapid stimulation of microbial activity has important implications for ecosystem biogeochemistry, yet associated changes in microbial transcription are poorly known. Here, we present metatranscriptomes of California annual grassland soil microbial communities, collected over 1 week from soils rewet after a summer drought-providing a time series of short-term transcriptional response during rewetting.

3.
Nat Commun ; 15(1): 2695, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538640

ABSTRACT

Global potent greenhouse gas nitrous oxide (N2O) emissions from soil are accelerating, with increases in the proportion of reactive nitrogen emitted as N2O, i.e., N2O emission factor (EF). Yet, the primary controls and underlying mechanisms of EFs remain unresolved. Based on two independent but complementary global syntheses, and three field studies determining effects of acidity on N2O EFs and soil denitrifying microorganisms, we show that soil pH predominantly controls N2O EFs and emissions by affecting the denitrifier community composition. Analysis of 5438 paired data points of N2O emission fluxes revealed a hump-shaped relationship between soil pH and EFs, with the highest EFs occurring in moderately acidic soils that favored N2O-producing over N2O-consuming microorganisms, and induced high N2O emissions. Our results illustrate that soil pH has a unimodal relationship with soil denitrifiers and EFs, and the net N2O emission depends on both the N2O/(N2O + N2) ratio and overall denitrification rate. These findings can inform strategies to predict and mitigate soil N2O emissions under future nitrogen input scenarios.


Subject(s)
Agriculture , Soil , Soil/chemistry , Nitrous Oxide/analysis , Fertilizers/analysis , Nitrogen , Hydrogen-Ion Concentration , Soil Microbiology , Denitrification
4.
New Phytol ; 242(4): 1661-1675, 2024 May.
Article in English | MEDLINE | ID: mdl-38358052

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) transport substantial plant carbon (C) that serves as a substrate for soil organisms, a precursor of soil organic matter (SOM), and a driver of soil microbial dynamics. Using two-chamber microcosms where an air gap isolated AMF from roots, we 13CO2-labeled Avena barbata for 6 wk and measured the C Rhizophagus intraradices transferred to SOM and hyphosphere microorganisms. NanoSIMS imaging revealed hyphae and roots had similar 13C enrichment. SOM density fractionation, 13C NMR, and IRMS showed AMF transferred 0.77 mg C g-1 of soil (increasing total C by 2% relative to non-mycorrhizal controls); 33% was found in occluded or mineral-associated pools. In the AMF hyphosphere, there was no overall change in community diversity but 36 bacterial ASVs significantly changed in relative abundance. With stable isotope probing (SIP)-enabled shotgun sequencing, we found taxa from the Solibacterales, Sphingobacteriales, Myxococcales, and Nitrososphaerales (ammonium oxidizing archaea) were highly enriched in AMF-imported 13C (> 20 atom%). Mapping sequences from 13C-SIP metagenomes to total ASVs showed at least 92 bacteria and archaea were significantly 13C-enriched. Our results illustrate the quantitative and ecological impact of hyphal C transport on the formation of potentially protective SOM pools and microbial roles in the AMF hyphosphere soil food web.


Subject(s)
Carbon , Minerals , Mycorrhizae , Mycorrhizae/physiology , Carbon/metabolism , Minerals/metabolism , Food Chain , Hyphae , Soil Microbiology , Carbon Isotopes , Avena/microbiology , Organic Chemicals/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Plant Roots/microbiology , Soil/chemistry
5.
Nat Commun ; 15(1): 1178, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331994

ABSTRACT

Unravelling biosphere feedback mechanisms is crucial for predicting the impacts of global warming. Soil priming, an effect of fresh plant-derived carbon (C) on native soil organic carbon (SOC) decomposition, is a key feedback mechanism that could release large amounts of soil C into the atmosphere. However, the impacts of climate warming on soil priming remain elusive. Here, we show that experimental warming accelerates soil priming by 12.7% in a temperate grassland. Warming alters bacterial communities, with 38% of unique active phylotypes detected under warming. The functional genes essential for soil C decomposition are also stimulated, which could be linked to priming effects. We incorporate lab-derived information into an ecosystem model showing that model parameter uncertainty can be reduced by 32-37%. Model simulations from 2010 to 2016 indicate an increase in soil C decomposition under warming, with a 9.1% rise in priming-induced CO2 emissions. If our findings can be generalized to other ecosystems over an extended period of time, soil priming could play an important role in terrestrial C cycle feedbacks and climate change.


Subject(s)
Ecosystem , Grassland , Soil , Carbon , Climate Change
6.
bioRxiv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38405713

ABSTRACT

Soil microbial communities perform critical ecosystem services through the collective metabolic activities of numerous individual organisms. Most microbes use corrinoids, a structurally diverse family of cofactors related to vitamin B12. Corrinoid structure influences the growth of individual microbes, yet how these growth responses scale to the community level remains unknown. Analysis of metagenome-assembled genomes suggests corrinoids are supplied to the community by members of the archaeal and bacterial phyla Thermoproteota, Actinobacteria, and Proteobacteria. Corrinoids were found largely adhered to the soil matrix in a grassland soil, at levels exceeding those required by cultured bacteria. Enrichment cultures and soil microcosms seeded with different corrinoids showed distinct shifts in bacterial community composition, supporting the hypothesis that corrinoid structure can shape communities. Environmental context influenced both community and taxon-specific responses to specific corrinoids. These results implicate corrinoids as key determinants of soil microbiome structure and suggest that environmental micronutrient reservoirs promote community stability.

7.
Nat Commun ; 14(1): 5835, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730729

ABSTRACT

Viruses are abundant, ubiquitous members of soil communities that kill microbial cells, but how they respond to perturbation of soil ecosystems is essentially unknown. Here, we investigate lineage-specific virus-host dynamics in grassland soil following "wet-up", when resident microbes are both resuscitated and lysed after a prolonged dry period. Quantitative isotope tracing, time-resolved metagenomics and viromic analyses indicate that dry soil holds a diverse but low biomass reservoir of virions, of which only a subset thrives following wet-up. Viral richness decreases by 50% within 24 h post wet-up, while viral biomass increases four-fold within one week. Though recent hypotheses suggest lysogeny predominates in soil, our evidence indicates that viruses in lytic cycles dominate the response to wet-up. We estimate that viruses drive a measurable and continuous rate of cell lysis, with up to 46% of microbial death driven by viral lysis one week following wet-up. Thus, viruses contribute to turnover of soil microbial biomass and the widely reported CO2 efflux following wet-up of seasonally dry soils.


Subject(s)
Ecosystem , Viruses , Grassland , California , Soil
8.
mSystems ; 8(5): e0031523, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37754554

ABSTRACT

IMPORTANCE: Plant roots modulate microbial nitrogen (N) cycling by regulating the supply of root-derived carbon and nitrogen uptake. These differences in resource availability cause distinct micro-habitats to develop: soil near living roots, decaying roots, near both, or outside the direct influence of roots. While many environmental factors and genes control the microbial processes involved in the nitrogen cycle, most research has focused on single genes and pathways, neglecting the interactive effects these pathways have on each other. The processes controlled by these pathways determine consumption and production of N by soil microorganisms. We followed the expression of N-cycling genes in four soil microhabitats over a period of active root growth for an annual grass. We found that the presence of root litter and living roots significantly altered gene expression involved in multiple nitrogen pathways, as well as tradeoffs between pathways, which ultimately regulate N availability to plants.


Subject(s)
Rhizosphere , Soil , Ecosystem , Nitrogen/analysis , Plant Development/genetics
9.
Nat Ecol Evol ; 7(11): 1809-1822, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37770548

ABSTRACT

As central members of soil trophic networks, viruses have the potential to drive substantial microbial mortality and nutrient turnover. Pinpointing viral contributions to terrestrial ecosystem processes remains a challenge, as temporal dynamics are difficult to unravel in the spatially and physicochemically heterogeneous soil environment. In Mediterranean grasslands, the first rainfall after seasonal drought provides an ecosystem reset, triggering microbial activity during a tractable window for capturing short-term dynamics. Here, we simulated precipitation in microcosms from four distinct dry grassland soils and generated 144 viromes, 84 metagenomes and 84 16S ribosomal RNA gene amplicon datasets to characterize viral, prokaryotic and relic DNA dynamics over 10 days. Vastly different viral communities in each soil followed remarkably similar successional trajectories. Wet-up triggered a significant increase in viral richness, followed by extensive compositional turnover. Temporal succession in prokaryotic communities was much less pronounced, perhaps suggesting differences in the scales of activity captured by viromes (representing recently produced, ephemeral viral particles) and total DNA. Still, differences in the relative abundances of Actinobacteria (enriched in dry soils) and Proteobacteria (enriched in wetted soils) matched those of their predicted phages, indicating viral predation of dominant bacterial taxa. Rewetting also rapidly depleted relic DNA, which subsequently reaccumulated, indicating substantial new microbial mortality in the days after wet-up, particularly of the taxa putatively under phage predation. Production of abundant, diverse viral particles via microbial host cell lysis appears to be a conserved feature of the early response to soil rewetting, and results suggest the potential for 'Cull-the-Winner' dynamics, whereby viruses infect and cull but do not decimate dominant host populations.


Subject(s)
Ecosystem , Soil , Soil/chemistry , Seasons , Bacteria/genetics , DNA
10.
Glob Chang Biol ; 29(16): 4670-4685, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37221551

ABSTRACT

Continued current emissions of carbon dioxide (CO2 ) and methane (CH4 ) by human activities will increase global atmospheric CO2 and CH4 concentrations and surface temperature significantly. Fields of paddy rice, the most important form of anthropogenic wetlands, account for about 9% of anthropogenic sources of CH4 . Elevated atmospheric CO2 may enhance CH4 production in rice paddies, potentially reinforcing the increase in atmospheric CH4 . However, what is not known is whether and how elevated CO2 influences CH4 consumption under anoxic soil conditions in rice paddies, as the net emission of CH4 is a balance of methanogenesis and methanotrophy. In this study, we used a long-term free-air CO2 enrichment experiment to examine the impact of elevated CO2 on the transformation of CH4 in a paddy rice agroecosystem. We demonstrate that elevated CO2 substantially increased anaerobic oxidation of methane (AOM) coupled to manganese and/or iron oxides reduction in the calcareous paddy soil. We further show that elevated CO2 may stimulate the growth and metabolism of Candidatus Methanoperedens nitroreducens, which is actively involved in catalyzing AOM when coupled to metal reduction, mainly through enhancing the availability of soil CH4 . These findings suggest that a thorough evaluation of climate-carbon cycle feedbacks may need to consider the coupling of methane and metal cycles in natural and agricultural wetlands under future climate change scenarios.


Subject(s)
Oryza , Soil , Humans , Carbon Dioxide/analysis , Anaerobiosis , Methane/metabolism , Agriculture , Oryza/metabolism
12.
ISME J ; 17(7): 967-975, 2023 07.
Article in English | MEDLINE | ID: mdl-37059820

ABSTRACT

Nitrogen (N) is frequently limiting to plant growth, in part because most soil N is present as polymeric organic compounds that are not readily taken up by plants. Microbial depolymerization of these large macromolecular N-substrates gradually releases available inorganic N. While many studies have researched and modeled controls on soil organic matter formation and bulk N mineralization, the ecological-spatial, temporal and phylogenetic-patterns underlying organic N degradation remain unclear. We analyzed 48 time-resolved metatranscriptomes and quantified N-depolymerization gene expression to resolve differential expression by soil habitat and time in specific taxonomic groups and gene-based guilds. We observed much higher expression of extracellular serine-type proteases than other extracellular N-degrading enzymes, with protease expression of predatory bacteria declining with time and other taxonomic patterns driven by the presence (Gammaproteobacteria) or absence (Thermoproteota) of live roots and root detritus (Deltaproteobacteria and Fungi). The primary chitinase chit1 gene was more highly expressed by eukaryotes near root detritus, suggesting predation of fungi. In some lineages, increased gene expression over time suggests increased competitiveness with rhizosphere age (Chloroflexi). Phylotypes from some genera had protease expression patterns that could benefit plant N nutrition, for example, we identified a Janthinobacterium phylotype and two Burkholderiales that depolymerize organic N near young roots and a Rhizobacter with elevated protease levels near mature roots. These taxon-resolved gene expression results provide an ecological read-out of microbial interactions and controls on N dynamics in specific soil microhabitats and could be used to target potential plant N bioaugmentation strategies.


Subject(s)
Nitrogen , Soil , Soil/chemistry , Nitrogen/metabolism , Poaceae/metabolism , Phylogeny , Rhizosphere , Plants/metabolism , Peptide Hydrolases/metabolism , Fungi , Soil Microbiology , Plant Roots/microbiology
13.
Proc Natl Acad Sci U S A ; 119(45): e2209132119, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36322723

ABSTRACT

Viruses shape microbial communities, food web dynamics, and carbon and nutrient cycling in diverse ecosystems. However, little is known about the patterns and drivers of viral community composition, particularly in soil, precluding a predictive understanding of viral impacts on terrestrial habitats. To investigate soil viral community assembly processes, here we analyzed 43 soil viromes from a rainfall manipulation experiment in a Mediterranean grassland in California. We identified 5,315 viral populations (viral operational taxonomic units [vOTUs] with a representative sequence ≥10 kbp) and found that viral community composition exhibited a highly significant distance-decay relationship within the 200-m2 field site. This pattern was recapitulated by the intrapopulation microheterogeneity trends of prevalent vOTUs (detected in ≥90% of the viromes), which tended to exhibit negative correlations between spatial distance and the genomic similarity of their predominant allelic variants. Although significant spatial structuring was also observed in the bacterial and archaeal communities, the signal was dampened relative to the viromes, suggesting differences in local assembly drivers for viruses and prokaryotes and/or differences in the temporal scales captured by viromes and total DNA. Despite the overwhelming spatial signal, evidence for environmental filtering was revealed in a protein-sharing network analysis, wherein a group of related vOTUs predicted to infect actinobacteria was shown to be significantly enriched in low-moisture samples distributed throughout the field. Overall, our results indicate a highly diverse, dynamic, active, and spatially structured soil virosphere capable of rapid responses to changing environmental conditions.


Subject(s)
Microbiota , Viruses , Soil , Soil Microbiology , Grassland , Bacteria/genetics , Viruses/genetics , Genotype
14.
New Phytol ; 236(1): 210-221, 2022 10.
Article in English | MEDLINE | ID: mdl-35633108

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) can help mitigate plant responses to water stress, but it is unclear whether AMF do so by indirect mechanisms, direct water transport to roots, or a combination of the two. Here, we investigated if and how the AMF Rhizophagus intraradices transported water to the host plant Avena barbata, wild oat. We used two-compartment microcosms, isotopically labeled water, and a fluorescent dye to directly track and quantify water transport by AMF across an air gap to host plants. Plants grown with AMF that had access to a physically separated compartment containing 18 O-labeled water transpired almost twice as much as plants with AMF excluded from that compartment. Using an isotopic mixing model, we estimated that water transported by AMF across the air gap accounted for 34.6% of the water transpired by host plants. In addition, a fluorescent dye indicated that hyphae were able to transport some water via an extracytoplasmic pathway. Our study provides direct evidence that AMF can act as extensions of the root system along the soil-plant-air continuum of water movement, with plant transpiration driving water flow along hyphae outside of the hyphal cell membrane.


Subject(s)
Mycorrhizae , Fluorescent Dyes/metabolism , Fungi , Hyphae/metabolism , Mycorrhizae/physiology , Plant Roots/microbiology , Plants/microbiology
15.
Commun Biol ; 5(1): 227, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35277578

ABSTRACT

The perennial native switchgrass adapts better than other plant species do to marginal soils with low plant-available nutrients, including those with low phosphorus (P) content. Switchgrass roots and their associated microorganisms can alter the pools of available P throughout the whole soil profile making predictions of P availability in situ challenging. Plant P homeostasis makes monitoring of P limitation via measurements of plant P content alone difficult to interpret. To address these challenges, we developed a machine-learning model trained with high accuracy using the leaf tissue chemical profile, rather than P content. By applying this learned model in field trials across two sites with contrasting extractable soil P, we observed that actual plant available P in soil was more similar than expected, suggesting that adaptations occurred to alleviate the apparent P constraint. These adaptations come at a metabolic cost to the plant that have consequences for feedstock chemical components and quality. We observed that other biochemical signatures of P limitation, such as decreased cellulose-to-lignin ratios, were apparent, indicating re-allocation of carbon resources may have contributed to increased P acquisition. Plant P allocation strategies also differed across sites, and these differences were correlated with the subsequent year's biomass yields.


Subject(s)
Panicum , Phosphorus , Nitrogen/metabolism , Nutrients , Panicum/metabolism , Phosphorus/analysis , Soil/chemistry
16.
Nat Rev Microbiol ; 20(7): 415-430, 2022 07.
Article in English | MEDLINE | ID: mdl-35228712

ABSTRACT

Soil microorganisms shape global element cycles in life and death. Living soil microorganisms are a major engine of terrestrial biogeochemistry, driving the turnover of soil organic matter - Earth's largest terrestrial carbon pool and the primary source of plant nutrients. Their metabolic functions are influenced by ecological interactions with other soil microbial populations, soil fauna and plants, and the surrounding soil environment. Remnants of dead microbial cells serve as fuel for these biogeochemical engines because their chemical constituents persist as soil organic matter. This non-living microbial biomass accretes over time in soil, forming one of the largest pools of organic matter on the planet. In this Review, we discuss how the biogeochemical cycling of organic matter depends on both living and dead soil microorganisms, their functional traits, and their interactions with the soil matrix and other organisms. With recent omics advances, many of the traits that frame microbial population dynamics and their ecophysiological adaptations can be deciphered directly from assembled genomes or patterns of gene or protein expression. Thus, it is now possible to leverage a trait-based understanding of microbial life and death within improved biogeochemical models and to better predict ecosystem functioning under new climate regimes.


Subject(s)
Microbiota , Soil , Biomass , Carbon/metabolism , Ecosystem , Plants/metabolism , Soil Microbiology
17.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-34992138

ABSTRACT

Networks are vital tools for understanding and modeling interactions in complex systems in science and engineering, and direct and indirect interactions are pervasive in all types of networks. However, quantitatively disentangling direct and indirect relationships in networks remains a formidable task. Here, we present a framework, called iDIRECT (Inference of Direct and Indirect Relationships with Effective Copula-based Transitivity), for quantitatively inferring direct dependencies in association networks. Using copula-based transitivity, iDIRECT eliminates/ameliorates several challenging mathematical problems, including ill-conditioning, self-looping, and interaction strength overflow. With simulation data as benchmark examples, iDIRECT showed high prediction accuracies. Application of iDIRECT to reconstruct gene regulatory networks in Escherichia coli also revealed considerably higher prediction power than the best-performing approaches in the DREAM5 (Dialogue on Reverse Engineering Assessment and Methods project, #5) Network Inference Challenge. In addition, applying iDIRECT to highly diverse grassland soil microbial communities in response to climate warming showed that the iDIRECT-processed networks were significantly different from the original networks, with considerably fewer nodes, links, and connectivity, but higher relative modularity. Further analysis revealed that the iDIRECT-processed network was more complex under warming than the control and more robust to both random and target species removal (P < 0.001). As a general approach, iDIRECT has great advantages for network inference, and it should be widely applicable to infer direct relationships in association networks across diverse disciplines in science and engineering.

18.
Environ Sci Technol ; 55(19): 13345-13355, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34558892

ABSTRACT

Minerals preserve the oldest, most persistent soil carbon, and mineral characteristics appear to play a critical role in the formation of soil organic matter (SOM) associations. To test the hypothesis that roots, and differences in carbon source and microbial communities, influence mineral SOM associations over short timescales, we incubated permeable mineral bags in soil microcosms with and without plants, inside a 13CO2 labeling chamber. Mineral bags contained quartz, ferrihydrite, kaolinite, or soil minerals isolated via density separation. Using 13C-nuclear magnetic resonance, Fourier transform ion cyclotron resonance mass spectrometry, and lipidomics, we traced carbon deposition onto minerals, characterizing total carbon, 13C enrichment, and SOM chemistry over three growth stages of Avena barbata. Carbon accumulation was rapid and mineral-dependent but slowed with time; the accumulated amount was not significantly affected by root presence. However, plant roots strongly shaped the chemistry of mineral-associated SOM. Minerals incubated in a plant rhizosphere were associated with a more diverse array of compounds (with different functional groups-carbonyl, aromatics, carbohydrates, and lipids) than minerals incubated in an unplanted bulk soil control. We also found that many of the lipids that sorbed to minerals were microbially derived, including many fungal lipids. Together, our data suggest that diverse rhizosphere-derived compounds may represent a transient fraction of mineral SOM, rapidly exchanging with mineral surfaces.


Subject(s)
Carbon , Soil , Minerals , Rhizosphere , Soil Microbiology
19.
mSphere ; 6(5): e0008521, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34468166

ABSTRACT

The functioning, health, and productivity of soil are intimately tied to a complex network of interactions, particularly in plant root-associated rhizosphere soil. We conducted a stable-isotope-informed, genome-resolved metagenomic study to trace carbon from Avena fatua grown in a 13CO2 atmosphere into soil. We collected paired rhizosphere and nonrhizosphere soil at 6 and 9 weeks of plant growth and extracted DNA that was then separated by density using ultracentrifugation. Thirty-two fractions from each of five samples were grouped by density, sequenced, assembled, and binned to generate 55 unique bacterial genomes that were ≥70% complete. We also identified complete 18S rRNA sequences of several 13C-enriched microeukaryotic bacterivores and fungi. We generated 10 circularized bacteriophage (phage) genomes, some of which were the most labeled entities in the rhizosphere, suggesting that phage may be important agents of turnover of plant-derived C in soil. CRISPR locus targeting connected one of these phage to a Burkholderiales host predicted to be a plant pathogen. Another highly labeled phage is predicted to replicate in a Catenulispora sp., a possible plant growth-promoting bacterium. We searched the genome bins for traits known to be used in interactions involving bacteria, microeukaryotes, and plant roots and found DNA from heavily 13C-labeled bacterial genes thought to be involved in modulating plant signaling hormones, plant pathogenicity, and defense against microeukaryote grazing. Stable-isotope-informed, genome-resolved metagenomics indicated that phage can be important agents of turnover of plant-derived carbon in soil. IMPORTANCE Plants grow in intimate association with soil microbial communities; these microbes can facilitate the availability of essential resources to plants. Thus, plant productivity commonly depends on interactions with rhizosphere bacteria, viruses, and eukaryotes. Our work is significant because we identified the organisms that took up plant-derived organic C in rhizosphere soil and determined that many of the active bacteria are plant pathogens or can impact plant growth via hormone modulation. Further, by showing that bacteriophage accumulate CO2-derived carbon, we demonstrated their vital roles in redistribution of plant-derived C into the soil environment through bacterial cell lysis. The use of stable-isotope probing (SIP) to identify consumption (or lack thereof) of root-derived C by key microbial community members within highly complex microbial communities opens the way for assessing manipulations of bacteria and phage with potentially beneficial and detrimental traits, ultimately providing a path to improved plant health and soil carbon storage.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/biosynthesis , Genome, Bacterial/genetics , RNA, Bacterial/biosynthesis , Bacteria/classification , Carbon/metabolism , DNA, Bacterial/genetics , Isotope Labeling , Metagenomics , Phylogeny , Plant Roots/microbiology , RNA, Bacterial/genetics , Rhizosphere , Soil Microbiology
20.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Article in English | MEDLINE | ID: mdl-34349022

ABSTRACT

The concentration of atmospheric methane (CH4) continues to increase with microbial communities controlling soil-atmosphere fluxes. While there is substantial knowledge of the diversity and function of prokaryotes regulating CH4 production and consumption, their active interactions with viruses in soil have not been identified. Metagenomic sequencing of soil microbial communities enables identification of linkages between viruses and hosts. However, this does not determine if these represent current or historical interactions nor whether a virus or host are active. In this study, we identified active interactions between individual host and virus populations in situ by following the transfer of assimilated carbon. Using DNA stable-isotope probing combined with metagenomic analyses, we characterized CH4-fueled microbial networks in acidic and neutral pH soils, specifically primary and secondary utilizers, together with the recent transfer of CH4-derived carbon to viruses. A total of 63% of viral contigs from replicated soil incubations contained homologs of genes present in known methylotrophic bacteria. Genomic sequences of 13C-enriched viruses were represented in over one-third of spacers in CRISPR arrays of multiple closely related Methylocystis populations and revealed differences in their history of viral interaction. Viruses infecting nonmethanotrophic methylotrophs and heterotrophic predatory bacteria were also identified through the analysis of shared homologous genes, demonstrating that carbon is transferred to a diverse range of viruses associated with CH4-fueled microbial food networks.


Subject(s)
Bacteria/virology , Carbon/metabolism , DNA Viruses/genetics , Methane/metabolism , Soil/chemistry , Bacteria/genetics , Bacteria/metabolism , Carbon Radioisotopes/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Genome, Bacterial , Genome, Viral , Metagenomics , Methane/chemistry , Microbiota , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...