Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; 12(13): e2202508, 2023 05.
Article in English | MEDLINE | ID: mdl-36691300

ABSTRACT

Control of protein adsorption is essential for successful integration of healthcare materials into the body. Human plasma fibrinogen (HPF), especially its conformation is a key upstream regulator for platelet behavior and thus pathological clot formation at the blood-biomaterial interface. A previous study by the authors revealed that the conformation of adsorbed HPF can be controlled by rutile surface crystallographic orientation. Therefore, it is hypothesized that pre-adsorbed HPF on specific rutile orientation can regulate platelets adhesion and activation. Here, it is shown that platelets exposed to the four low index (110), (100), (101), (001) facets of TiO2 (rutile) exhibit surface-specific behavior. Scanning electron microscopy (SEM) observations of platelets morphology and P-selectin expression measurement revealed that on (110) facets, platelets adhesion and activation are suppressed. In contrast, extensive surface coverage by fully activated platelets is observed on (001) facets. Platelets' behavior has been linked to the HPF conformation and thereby availability of platelet-binding sequences. Atomic force microscopy (AFM) imaging supported by immunochemical analysis shows that on (110) facets, HPF is adsorbed in trinodular conformation rendering the γ400-411 platelet-binding sequence inaccessible. This research has potential implications on the bioactivity of different materials crystal facets, reducing the risk of pathological clot formation and thromboembolic complications.


Subject(s)
Fibrinogen , Hemostatics , Humans , Fibrinogen/chemistry , Platelet Adhesiveness , Titanium/pharmacology , Titanium/chemistry , Blood Platelets/metabolism , Hemostatics/pharmacology , Adsorption , Surface Properties , Platelet Activation
2.
Colloids Surf B Biointerfaces ; 215: 112506, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35487071

ABSTRACT

Previous studies implied that single crystalline rutile surfaces have the ability to guide the functionality of adsorbed blood plasma proteins. However, a clear relation between the rutile crystallographic orientation and conformation of adsorbed proteins is still missing. Here, we examine the adsorption characteristics of human plasma fibrinogen (HPF) on atomically flat single rutile crystals with (110), (100), (101) and (001) facets. By direct visualization of individual protein molecules through atomic force microscopy (AFM) imaging, the distinct conformations of HPF were determined depending on rutile surface crystallographic orientation. In particular, dominant trinodular and globular conformation was found on (110) and (001) facets, respectively. The observed variations of HPF conformation were reasoned from the surface water contact angle and surface energy point of view. By analyzing AFM-based force measurements, statistically significant changes in surface energies of rutile surfaces covered with HPF were determined and linked to HPF conformation. Furthermore, the facet-dependent structural rearrangement of HPF was indirectly confirmed through deconvolution of high-resolution X-ray photoelectron spectroscopy (XPS) carbon and nitrogen spectra. The globular, and thus native-like HPF conformation observed on (001) facet, was reflected in the lowest level of amino group formation. We propose that the mechanism behind the crystallographic orientation-induced HPF conformation is driven by the facet-specific surface hydrophilicity and energy. From the biomedical material perspective, our results demonstrate that the conformation of HPF can be guided by controlling the crystallographic orientation of the underlying material surface. This might be beneficial to the field of titanium-based biomaterials design and development.


Subject(s)
Hemostatics , Titanium , Adsorption , Biocompatible Materials , Fibrinogen/chemistry , Humans , Microscopy, Atomic Force , Surface Properties , Titanium/chemistry
3.
Materials (Basel) ; 14(14)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34300793

ABSTRACT

Oil-based calcium phosphate cement (Paste-CPC) shows not only prolonged shelf life and injection times, but also improved cohesion and reproducibility during application, while retaining the advantages of fast setting, mechanical strength, and biocompatibility. In addition, poly(L-lactide-co-glycolide) (PLGA) fiber reinforcement may decrease the risk for local extrusion. Bone defects (diameter 5 mm; depth 15 mm) generated ex vivo in lumbar (L) spines of female Merino sheep (2-4 years) were augmented using: (i) water-based CPC with 10% PLGA fiber reinforcement (L3); (ii) Paste-CPC (L4); or (iii) clinically established polymethylmethacrylate (PMMA) bone cement (L5). Untouched (L1) and empty vertebrae (L2) served as controls. Cement performance was analyzed using micro-computed tomography, histology, and biomechanical testing. Extrusion was comparable for Paste-CPC(-PLGA) and PMMA, but significantly lower for CPC + PLGA. Compressive strength and Young's modulus were similar for Paste-CPC and PMMA, but significantly higher compared to those for empty defects and/or CPC + PLGA. Expectedly, all experimental groups showed significantly or numerically lower compressive strength and Young's modulus than those of untouched controls. Ready-to-use Paste-CPC demonstrates a performance similar to that of PMMA, but improved biomechanics compared to those of water-based CPC + PLGA, expanding the therapeutic arsenal for bone defects. O, significantly lower extrusion of CPC + PLGA fibers into adjacent lumbar spongiosa may help to reduce the risk of local extrusion in spinal surgery.

4.
J Mech Behav Biomed Mater ; 115: 104285, 2021 03.
Article in English | MEDLINE | ID: mdl-33360485

ABSTRACT

Incorporation of biodegradable poly(lactic-co-glycolic acid; PLGA) fibers into calcium phosphate cements (CPCs) has proven beneficial for their mechanical properties and the targeted delivery of bone morphogenetic proteins (BMPs). However, the deficiency of functional groups on the PLGA surface results in poor fiber-matrix interfacial strength (ISS), limiting the mechanical improvement, and insufficient surface charge to immobilize therapeutic amounts of BMPs. The present study therefore focused on the: i) functionalization of PLGA fibers using polyelectrolyte multilayers (PEMs) of biopolymers; ii) analysis of their impact on the mechanical properties of the CPC in multifilament fiber pull-out tests; and iii) testing of their applicability as carriers for BMPs using chemical-free adsorption of biotinylated recombinant human growth factor (rhGDF-5) and colorimetric assays. The PEMs were created from chitosan (Chi), hyaluronic acid (HA), and gelatin (Gel) via layer-by-layer (LbL) deposition. Four PEM nanocoatings consisting of alternating Chi/Gel and Chi/HA bilayers with a terminating layer of Chi, Gel or HA were tested. Nanocoating of the PLGA fibers with PEMs significantly enhanced the ISS with the CPC matrix to max. 3.55 ± 1.05 MPa (2.2-fold). The increase in ISS, ascribed to enhanced electrostatic interactions between PLGA and calcium phosphate, was reflected in significant improvement of the composites' flexural strength compared to CPC containing untreated fibers. However, only minor effects on the composites' work of fracture were observed. The adsorption of rhGDF-5 on the PLGA surface was supported by PEMs terminating with either positive or negative charges, without significant differences among the nanocoatings. This proof-of-principle rhGDF-5 immobilization study, together with the augmented ISS of the composites, demonstrates that surface modification of PLGA fibers with biopolymers is a promising approach for targeted delivery of BMPs and improved mechanical properties of the fiber-reinforced CPC.


Subject(s)
Bone Cements , Calcium Phosphates , Biopolymers , Humans , Polylactic Acid-Polyglycolic Acid Copolymer , Shear Strength
5.
Langmuir ; 37(1): 391-399, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33356302

ABSTRACT

Block copolymers (BCPs) have previously been identified as powerful multiwalled carbon nanotube (MWCNT) dispersants in solution. However, relatively high costs and limited dispersibility hinder the use of BCPs in large-scale practical applications. Partial replacement of BCP with a low-cost homopolymer (HP) offers a promising approach to produce cost-effective MWNCT dispersions. The effect of HP/BCP blends on MWNCT dispersion degree and stability has yet to be elucidated. In this work, we tested the hypothesis that HP-induced BCP micelle size variation affects MWCNT dispersibility. Here, blends of the BCP poly(styrene)-block-poly(2-vinylpyridine) and the HP polystyrene (PS) were applied to examine BCP micelles' size dependence on the MWCNT dispersion degree. Light microscopy results showed that using HP/BCP blends, MWCNT dispersion was enhanced by up to 263% compared to pure BCP at a constant weight ratio of BCP to MWCNTs. Based on the correlation of increased MWCNT dispersion degree with increased BCP micelle size, as revealed by dynamic light scattering, an MWCNT dispersion mechanism is proposed. The mechanism includes a rationale for the unexpected finding that HP PS swells the BCP micelle's PS corona in a good solvent for PS. Using HP to increase MWCNT dispersion is a promising approach with possible applications in the production of high-performance composite materials. This holds especially for formulations of practical relevance where often (BCP) dispersants are only one of many components in the material.

6.
RSC Adv ; 11(23): 14113-14120, 2021 Apr 13.
Article in English | MEDLINE | ID: mdl-35423936

ABSTRACT

Hybrid protein nanofibers (hPNFs) have been identified as promising nano building blocks for numerous applications in nanomedicine and tissue engineering. We have recently reported a nature-inspired, self-assembly route to create hPNFs from human plasma proteins, i.e., albumin and hemoglobin. However, it is still unclear whether the same route can be applied to other plasma proteins and whether it is possible to control the composition of the resulting fibers. In this context, to further understand the hPNFs self-assembly mechanism and to optimize their properties, we report herein on ethanol-induced self-assembly of two different plasma proteins, i.e., fibrinogen (FG) and fibronectin (FN). We show that by varying initial protein ratios, the composition and thus the properties of the resulting hPNFs can be fine-tuned. Specifically, atomic force microscopy, hydrodynamic diameter, and zeta potential data together revealed a strong correlation of the hPNFs dimensions and surface charge to their initial protein mixing ratio. The composition-independent prompt dissolution of hPNFs in ultrapure water, in contrast to their stability in PBS, indicates that the molecular arrangement of FN and FG in hPNFs is mainly based on electrostatic interactions. Supported by experimental data we introduce a feasible mechanism that explains the interactions between FN and FG and their self-assembly to hPNFs. These findings contribute to the understanding of dual protein interactions, which can be beneficial in designing innovative biomaterials with multifaceted biological and physical characteristics.

7.
Langmuir ; 36(39): 11573-11580, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32921061

ABSTRACT

The conformational state of adsorbed human plasma fibrinogen (HPF) has been recognized as the determinant factor in platelet adhesion and thrombus formation on blood-contacting biomaterials. Studies have highlighted the ability to control the HPF conformation merely by tailoring surface nanotopographical features. However, a clear relationship between the conformational changes of adsorbed HPF and the degree of platelet adhesion and activation achieved with different surface nanotopographies is still unclear. Here, we examined HPF assembly characteristics on nanostructured polybutene-1 (PB-1) surfaces with nanosized lamellar crystals (LCs), needle-like crystals (NLCs), and a nanostructured high-density polyethylene (HDPE) surface with shish-kebab crystals (SKCs), at a biologically relevant HPF concentration. By exposing the nanostructured surfaces with preadsorbed HPF to human platelets, significant differences in platelet response on LCs/SKCs and NLCs were identified. The former presented a uniform monolayer in the advanced stage of activation, whereas the latter exhibited minimal adhesion and the early stage of activation. Distinct platelet response was related to the postadsorption conformational changes in HPF, which were confirmed by topography-dependent shifts of the amide I band in attenuated total reflection-Fourier transform infrared (ATR-FTIR) analysis. Supported by atomic force microscopy (AFM) characterization, we propose that the mechanism behind the nanotopography-induced HPF conformation is driven by the interplay between the aspect ratios of polymeric crystals and HPF. From the biomedical perspective, our work reveals that surface structuring in a nanoscale size regime can provide a fine-tuning mechanism to manipulate HPF conformation, which can be exploited for the design of thromboresistant biomaterials surfaces.


Subject(s)
Fibrinogen , Platelet Adhesiveness , Adsorption , Biocompatible Materials , Blood Platelets , Humans , Platelet Activation , Surface Properties
8.
Colloids Surf B Biointerfaces ; 194: 111177, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32569885

ABSTRACT

It has been recently recognized that controlled surface structuring on the nanometer scale is a successful strategy to endow different materials with antimicrobial properties. Despite many studies on bacterial interactions with nanostructured surfaces, a quantitative link between surface topography and bacterial adhesion is still missing. To quantitatively link cell adhesion data with topographical surface parameters, we performed single-cell spectroscopy on chemically identical surfaces with controlled nano-contact point density achieved by immobilization of gold nanoparticles (AuNP) on gold thin films. Such materials surfaces have previously shown antimicrobial (anti-adhesive) efficacy towards Gram-negative Escherichia coli cells. In the current study, the influence of nano-structured surfaces on the surface coverage and adhesion forces of clinically relevant Candida albicans (C. albicans), the fungus primarily associated with implant infections, was investigated to validate their antimicrobial potency against different microbial cells. The adhesion forces of C. albicans cells to nanostructured surfaces showed a decreasing trend with decreasing contact-point density and correlated well with the results of the respective C. albicans cell counts. The surfaces with the lowest contact-point density, 25 AuNP/µm², resulted in an average adhesion force of 5 nN, which was up to 5 times lower compared to control and 61 AuNP/µm² surfaces. Further, detailed analyses of force-distance curves revealed that the work of adhesion, and thus the energy required to remove the C. albicans cell from the surface is up to 10 times lower on 25 AuNP/µm² surfaces compared to unstructured surfaces. These findings show that a controlled tuning of nanostructured surfaces in terms of accessible nano-contact points is crucial to generate surface structures with enhanced antimicrobial properties. The gained knowledge can be further exploited for the design of biomaterials surfaces to prevent adhesion of some most commonly encountered pathogens.


Subject(s)
Candida albicans , Metal Nanoparticles , Bacterial Adhesion , Cell Adhesion , Gold , Surface Properties
9.
Langmuir ; 34(47): 14309-14316, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30354162

ABSTRACT

Surface nanostructures are increasingly more employed for controlled protein assembly on functional nanodevices, in nanobiotechnology, and in nanobiomaterials. However, the mechanism and dynamics of how nanostructures induce order in the adsorbed protein assemblies are still enigmatic. Here, we use single-molecule mapping by accumulated probe trajectories and complementary atomic force microscopy to shed light on the dynamic of in situ assembly of human plasma fibrinogen (HPF) adsorbed on nanostructured polybutene-1 (PB-1) and nanostructured polyethylene (PE) surfaces. We found a distinct lateral heterogeneity of HPF-polymer nanostructure interface (surface occupancy, residence time, and diffusion coefficient) that allow identifying the interplay between protein topographical nanoconfinement, protein diffusion mechanism, and ordered protein self-assembly. The protein diffusion analysis revealed high-diffusion polarization without correlation to the anisotropic friction characteristic of the polymer surfaces. This suggests that HPF molecules confined on the nanosized PB-1 needle crystals and PE shish-kebab crystals, respectively, undergo partial detachment and diffuse via a Sansetsukon-like nanocrawling mechanism. This mechanism is based on the intrinsic flexibility of HPF in the coiled-coil regions. We conclude that nanostructured surfaces that encourage this characteristic surface mobility are more likely to lead to the formation of ordered protein assemblies and may be useful for advanced nanobiomaterials.


Subject(s)
Fibrinogen/chemistry , Nanostructures/chemistry , Polyenes/chemistry , Polyethylene/chemistry , Adsorption , Diffusion , Humans , Models, Molecular , Protein Conformation , Surface Properties
10.
ACS Nano ; 12(2): 1211-1219, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29298383

ABSTRACT

Creating and establishing proof of hybrid protein nanofibers (hPNFs), i.e., PNFs that contain more than one protein, is a currently unsolved challenge in bioinspired materials science. Such hPNFs could serve as universal building blocks for the bottom-up preparation of functional materials with bespoke properties. Here, inspired by the protein assemblies occurring in nature, we introduce hPNFs created via a facile self-assembly route and composed of human serum albumin (HSA) and human hemoglobin (HGB) proteins. Our circular dichroism results shed light on the mechanism of the proteins' self-assembly into hybrid nanofibers, which is driven by electrostatic/hydrophobic interactions between similar amino acid sequences (protein handshake) exposed to ethanol-triggered protein denaturation. Based on nanoscale characterization with tip-enhanced Raman spectroscopy (TERS) and immunogold labeling, our results demonstrate the existence and heterogenic nature of the hPNFs and reveal the high HSA/HGB composition ratio, which is attributed to the fast self-assembling kinetics of HSA. The self-assembled hPNFs with a high aspect ratio of over 100 can potentially serve as biocompatible units to create larger bioactive structures, devices, and sensors.


Subject(s)
Albumins/chemistry , Hemoglobins/chemistry , Nanofibers/chemistry , Circular Dichroism , Humans , Spectrum Analysis, Raman
11.
Colloids Surf B Biointerfaces ; 163: 201-208, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29304434

ABSTRACT

Surface structures in the nanometer range emerge as the next evolutionary breakthrough in the design of biomaterials with antimicrobial properties. However, in order to advance the application of surface nanostructuring strategies in medical implants, the very nature of the microbial repealing mechanism has yet to be understood. Herein, we demonstrate that the random immobilization of gold nanoparticles (AuNPs) on a material's surface generates the possibility to explore microbial adhesion in dependence of contact point densities at the biointerface between the microbe, i.e., Escherichia coli and the material's surface. By optimizing the contact point density defined by individual AuNPs, yet keeping the surface chemistry unchanged as evidenced by X-ray photoelectron spectroscopy, we show that the initial microbial adhesion can be successfully reduced up to 50%, compared to control (unstructured) surfaces. Furthermore, we observed a decrease in the size of microbial cells adhered to nanostructured surfaces. The results show that the spatial distance between the contact points plays a crucial role in regulating microbial adhesion, thus advancing our understanding of the microbial adhesion mechanism on nanostructured surfaces. We suggest that the introduced strategy for nanostructuring materials surfaces opens a research direction for highly microbial-resistant biomaterials.


Subject(s)
Bacterial Adhesion/drug effects , Gold/pharmacology , Metal Nanoparticles/chemistry , Escherichia coli/drug effects , Escherichia coli/ultrastructure , Metal Nanoparticles/ultrastructure , Microscopy, Atomic Force , Particle Size , Surface Properties
12.
Adv Healthc Mater ; 7(1)2018 01.
Article in English | MEDLINE | ID: mdl-29193909

ABSTRACT

The initial host response to healthcare materials' surfaces after implantation is the adsorption of proteins from blood and interstitial fluids. This adsorbed protein layer modulates the biological/cellular responses to healthcare materials. This stresses the significance of the surface protein assembly for the biocompatibility and functionality of biomaterials and necessitates a profound fundamental understanding of the capability to control protein-surface interactions. This review, therefore, addresses this by systematically analyzing and discussing strategies to control protein adsorption on polymeric healthcare materials through the introduction of specific surface nanostructures. Relevant proteins, healthcare materials' surface properties, clinical applications of polymer healthcare materials, fabrication methods for nanostructured polymer surfaces, amorphous, semicrystalline and block copolymers are considered with a special emphasis on the topographical control of protein adsorption. The review shows that nanostructured polymer surfaces are powerful tools to control the amount, orientation, and order of adsorbed protein layers. It also shows that the understanding of the biological responses to such ordered protein adsorption is still in its infancy, yet it has immense potential for future healthcare materials. The review, which is-as far as it is known-the first one discussing protein adsorption on nanostructured polymer surfaces, concludes with highlighting important current research questions.


Subject(s)
Biocompatible Materials/chemistry , Nanostructures/chemistry , Polymers/chemistry , Animals , Humans , Surface Properties
13.
Langmuir ; 33(26): 6563-6571, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28598173

ABSTRACT

From the view of biomedical relevance, it is known that a specific arrangement of surface-immobilized human plasma fibrinogen (HPF) molecules is required to retain their biological functionality. Here, we demonstrate a topographical effect of chemically identical isotactic poly(butene-1) (iPB-1) semicrystalline nanostructures on the adsorption behavior, i.e., conformation change and orientation of HPF molecules. Using the distinct crystallization of iPB-1 under different shear conditions, polymer thin films consisting of needle-like crystals (NLCs) or shish-kebab crystals (SKCs) having lateral dimension, i.e., width, smaller than or comparable to the HPF major axis, respectively, were fabricated. The protein adsorption kinetic studies by quartz crystal microbalance with dissipation (QCM-D) revealed surface-dependent packing density and assembly configuration of HPF. High-resolution imaging disclosed a "side-on" protein adsorption and anisotropic network formation on the NLCs. With a 2-fold orientation analysis performed at both "single" protein and multiprotein levels, we quantitatively proved the preferential alignment of adsorbed HPF molecules with respect to the axial direction of the NLCs. Remarkably, the iPB-1 surface with SKCs perturbed the "end-to-end" protein-protein interactions and thus hindered the network formation. The distinguished adsorption behavior of HPF molecules on iPB-1 surfaces is explained by the physical effect of crystal width, which is additionally supported by the synergistic effect of crystal curvature and aspect ratio. Our studies provide fundamental insight into purely topography-controlled self-assembly of HPF molecules, which might be further exploited in creating topographically defined implant surfaces for preventing protein aggregation related disorders.


Subject(s)
Nanoparticles , Adsorption , Alkenes , Fibrinogen , Humans , Kinetics , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...