Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 9(1): 748, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29487311

ABSTRACT

The detection of silica-rich dust particles, as an indication for ongoing hydrothermal activity, and the presence of water and organic molecules in the plume of Enceladus, have made Saturn's icy moon a hot spot in the search for potential extraterrestrial life. Methanogenic archaea are among the organisms that could potentially thrive under the predicted conditions on Enceladus, considering that both molecular hydrogen (H2) and methane (CH4) have been detected in the plume. Here we show that a methanogenic archaeon, Methanothermococcus okinawensis, can produce CH4 under physicochemical conditions extrapolated for Enceladus. Up to 72% carbon dioxide to CH4 conversion is reached at 50 bar in the presence of potential inhibitors. Furthermore, kinetic and thermodynamic computations of low-temperature serpentinization indicate that there may be sufficient H2 gas production to serve as a substrate for CH4 production on Enceladus. We conclude that some of the CH4 detected in the plume of Enceladus might, in principle, be produced by methanogens.


Subject(s)
Exobiology , Extraterrestrial Environment/chemistry , Methane/biosynthesis , Saturn , Atmosphere/chemistry , Atmospheric Pressure , Hydrogen/metabolism , Methanobacteriaceae/growth & development , Methanobacteriaceae/metabolism , Methanococcaceae/growth & development , Methanococcaceae/metabolism , Methanococcus/growth & development , Methanococcus/metabolism , Models, Biological , Spacecraft
2.
Life (Basel) ; 5(4): 1652-86, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26703739

ABSTRACT

Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens.

3.
Life (Basel) ; 3(4): 538-49, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-25369885

ABSTRACT

The problem of how life began can be considered as a matter of basic chemistry. How did the molecules of life arise from non-biological chemistry? Stanley Miller's famous experiment in 1953, in which he produced amino acids under simulated early Earth conditions, was a huge leap forward in our understanding of this problem. Our research first simulated early Earth conditions based on Miller's experiment and we then repeated the experiment using Titan post-impact conditions. We simulated conditions that could have existed on Titan after an asteroid strike. Specifically, we simulated conditions after a potential strike in the subpolar regions of Titan that exhibit vast methane-ethane lakes. If the asteroid or comet was of sufficient size, it would also puncture the icy crust and bring up some of the subsurface liquid ammonia-water mixture. Since, O'Brian, Lorenz and Lunine showed that a liquid water-ammonia body could exist between about 102-104 years on Titan after an asteroid impact we modified our experimental conditions to include an ammonia-water mixture in the reaction medium. Here we report on the resulting amino acids found using the Titan post-impact conditions in a classical Miller experimental reaction set-up and how they differ from the simulated early Earth conditions.

4.
Orig Life Evol Biosph ; 41(6): 545-52, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22139520

ABSTRACT

A radiative convective model to calculate the width and the location of the life supporting zone (LSZ) for different, alternative solvents (i.e. other than water) is presented. This model can be applied to the atmospheres of the terrestrial planets in the solar system as well as (hypothetical, Earth-like) terrestrial exoplanets. Cloud droplet formation and growth are investigated using a cloud parcel model. Clouds can be incorporated into the radiative transfer calculations. Test runs for Earth, Mars and Titan show a good agreement of model results with observations.


Subject(s)
Atmosphere , Extraterrestrial Environment/chemistry , Models, Chemical , Origin of Life , Planets , Evolution, Planetary , Exobiology
SELECTION OF CITATIONS
SEARCH DETAIL
...