Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Sci Mater Med ; 33(3): 32, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35267104

ABSTRACT

Amniotic membrane (AM) is a biological tissue that surrounds the fetus in the mother's womb. It has pluripotent cells, immune modulators, collagen, cytokines with anti-fibrotic and anti-inflammatory effect, matrix proteins, and growth factors. In spite of the biological characteristics, some results have been released in preventing the adhesion on traumatized surfaces. Application of the AM as a scaffold is limited due to its low biomechanical resistance and rapid biodegradation. Therefore, for using the AM during surgery, its modification by different methods such as cross-linking of the membrane collagen is necessary, because the cross-linking is an effective way to reduce the rate of biodegradation of the biological materials. In addition, their cross-linking is likely an efficient way to increase the tensile properties of the material, so that they can be easily handled or sutured. In this regard, various methods related to cross-linking of the AM subsuming the composite materials, physical cross-linking, and chemical cross-linking with the glutraldehyde, carbodiimide, genipin, aluminum sulfate, etc. are reviewed along with its advantages and disadvantages in the current work.


Subject(s)
Amnion , Carbodiimides , Amnion/chemistry , Biocompatible Materials/chemistry , Carbodiimides/chemistry , Collagen/chemistry , Cross-Linking Reagents/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry
2.
BMC Biotechnol ; 21(1): 6, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33430842

ABSTRACT

BACKGROUND: Microcapsule is considered as a promising 3D microenvironment for Bone Tissue Engineering (BTE) applications. Microencapsulation of cells in an appropriate scaffold not only protected the cells against excess stress but also promoted cell proliferation and differentiation. Through the current study, we aimed to microcapsulate the human Dental Pulp Stem Cells (hDPSCs) and evaluated the proliferation and osteogenic differentiation of those cells by using MTT assay, qRT-PCR, Alkaline phosphatase, and Alizarine Red S. RESULTS: The SEM results revealed that Alg/Gel microcapsules containing nHA showed a rough and more compact surface morphology in comparison with the Alg/Gel microcapsules. Moreover, the microencapsulation by Alg/Gel/nHA could improve cell proliferation and induce osteogenic differentiation. The cells cultured in the Alg/Gel and Alg/Gel/nHA microcapsules showed 1.4-fold and 1.7-fold activity of BMP-2 gene expression more in comparison with the control group after 21 days. The mentioned amounts for the BMP-2 gene were 2.5-fold and 4-fold more expression for the Alg/Gel and Alg/Gel/nHA microcapsules after 28 days. The nHA, addition to hDPSCs-laden Alg/Gel microcapsule, could up-regulate the bone-related gene expressions of osteocalcin, osteonectin, and RUNX-2 during the 21 and 28 days through the culturing period, too. Calcium deposition and ALP activities of the cells were observed in accordance with the proliferation results as well as the gene expression analysis. CONCLUSION: The present study demonstrated that microencapsulation of the hDPSCs inside the Alg/Gel/nHA hydrogel could be a potential approach for regenerative dentistry in the near future.


Subject(s)
Alginates/pharmacology , Capsules/pharmacology , Cell Differentiation/drug effects , Dental Pulp/metabolism , Durapatite/pharmacology , Gelatin/pharmacology , Osteogenesis/drug effects , Stem Cells/metabolism , Alginates/chemistry , Alkaline Phosphatase/metabolism , Calcium , Cell Differentiation/physiology , Cell Proliferation/drug effects , Durapatite/chemistry , Gelatin/chemistry , Gene Expression , Humans , Hydrogels , Nanostructures/chemistry , Osteocalcin/genetics , Osteocalcin/metabolism , Osteogenesis/physiology , Tissue Engineering
3.
J Biomed Mater Res A ; 108(2): 340-350, 2020 02.
Article in English | MEDLINE | ID: mdl-31618526

ABSTRACT

To maintain gelatin (Gel) as adhesive motifs inside alginate microcapsule as building blocks of modular approach, phenol moiety (Ph) was introduced into gelatin (Gel Ph). Addition of Gel Ph to alginate (Alg-Gel Ph) dramatically altered the physical properties of alginate-based hydrogels as compared to unmodified gelatin (Alg-Gel) addition. Alg-Gel Ph hydrogels revealed a dramatically lower swelling ratios (63%) as compared to Alg-Gel hydrogels (150%). Moreover, Gel Ph decreased 40% degradation rate of alginate-based hydrogels after 72 hr, while increasing compressive modulus 3.5-fold as compared to Alg-Gel hydrogels. Introducing nano-hydroxyapatite (nHA) to Alg-Gel Ph hydrogel (Alg-Gel Ph-nHA) could reduce degradation rate to 41.5% and improve compressive modulus of hydrogels significantly, reaching to 294 ± 2.5 kPa. The microencapsulated osteoblast-like cells proliferated considerably and showed more metabolic activities (two times) in Alg-Gel Ph-nHA microcapsules during a 21-day culture period, resulting in more calcium deposition and alkaline phosphatase (ALP) activities. The subcutaneous microcapsules could also be identified readily without complete absorption and signs of toxicity or any untoward reactions and viable osteoblast-like cells were seen as red colored areas in the central regions of cell-laden microcapsules after 1 month. The study demonstrated Alg-Gel Ph-nHA microcapsule as a promising 3D microenvironment for modular bone tissue formation.


Subject(s)
Alginates/chemistry , Durapatite/chemistry , Gelatin/chemistry , Osteogenesis , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/chemistry , Cells, Immobilized/cytology , Cells, Immobilized/transplantation , Compressive Strength , Male , Osteoblasts/cytology , Osteoblasts/transplantation , Rats, Wistar , Tissue Engineering
4.
Mater Sci Eng C Mater Biol Appl ; 98: 300-310, 2019 May.
Article in English | MEDLINE | ID: mdl-30813032

ABSTRACT

The aim of this study was to developing two novel nanofibrous scaffolds composed of poly(ethylene glycol)-modified polypyrrole [PEG-b-(PPy)4] and poly(ε-caprolactone) (PCL) for tissue engineering (TE) applications. For this purpose, pyrrole-functionalized PEGs AB4 macromonomers (PyPEGsM) were synthesized through the Steglich esterification of PEGs ends-caped tetraol [PEGs(OH)4] using pyrrole-2-carboxylic acid. These macromonomers were subsequently copolymerized with pyrrole monomer using chemical oxidation polymerization approach to produce PEGs-b-(PPy)4 copolymers. A solution of PCL and the synthesized PEGs-b-(PPy)4 copolymers were electrospun to fabricate uniform, conductive, and biocompatible nanofibrous scaffolds. The performances of the fabricated nanofibers as TE scaffolds were examined in terms of biological (biocompatibility and biodegradability) as well as physicochemical (electroactivity, conductivity, mechanical properties, and morphology) features. As the results, the fabricated electrospun nanofibers were found as proper scaffolds for use in TE applications that require electroactivity.


Subject(s)
Nanofibers/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...