Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(8): 7366-7376, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37014759

ABSTRACT

Relative to conventional wet-chemical synthesis techniques, on-surface synthesis of organic networks in ultrahigh vacuum has few control parameters. The molecular deposition rate and substrate temperature are typically the only synthesis variables to be adjusted dynamically. Here we demonstrate that reducing conditions in the vacuum environment can be created and controlled without dedicated sources─relying only on backfilled hydrogen gas and ion gauge filaments─and can dramatically influence the Ullmann-like on-surface reaction used for synthesizing two-dimensional covalent organic frameworks (2D COFs). Using tribromo dimethylmethylene-bridged triphenylamine ((Br3)DTPA) as monomer precursors, we find that atomic hydrogen (H•) blocks aryl-aryl bond formation to such an extent that we suspect this reaction may be a factor in limiting the ultimate size of 2D COFs created through on-surface synthesis. Conversely, we show that control of the relative monomer and hydrogen fluxes can be used to produce large self-assembled islands of monomers, dimers, or macrocycle hexamers, which are of interest in their own right. On-surface synthesis of oligomers, from a single precursor, circumvents potential challenges with their protracted wet-chemical synthesis and with multiple deposition sources. Using scanning tunneling microscopy and spectroscopy (STM/STS), we show that changes in the electronic states through this oligomer sequence provide an insightful view of the 2D COF (synthesized in the absence of atomic hydrogen) as the end point in an evolution of electronic structures from the monomer.

2.
Nature ; 467(7312): 185-9, 2010 Sep 09.
Article in English | MEDLINE | ID: mdl-20829790

ABSTRACT

Electrons in a single sheet of graphene behave quite differently from those in traditional two-dimensional electron systems. Like massless relativistic particles, they have linear dispersion and chiral eigenstates. Furthermore, two sets of electrons centred at different points in reciprocal space ('valleys') have this dispersion, giving rise to valley degeneracy. The symmetry between valleys, together with spin symmetry, leads to a fourfold quartet degeneracy of the Landau levels, observed as peaks in the density of states produced by an applied magnetic field. Recent electron transport measurements have observed the lifting of the fourfold degeneracy in very large applied magnetic fields, separating the quartet into integer and, more recently, fractional levels. The exact nature of the broken-symmetry states that form within the Landau levels and lift these degeneracies is unclear at present and is a topic of intense theoretical debate. Here we study the detailed features of the four quantum states that make up a degenerate graphene Landau level. We use high-resolution scanning tunnelling spectroscopy at temperatures as low as 10 mK in an applied magnetic field to study the top layer of multilayer epitaxial graphene. When the Fermi level lies inside the fourfold Landau manifold, significant electron correlation effects result in an enhanced valley splitting for even filling factors, and an enhanced electron spin splitting for odd filling factors. Most unexpectedly, we observe states with Landau level filling factors of 7/2, 9/2 and 11/2, suggestive of new many-body states in graphene.

3.
Phys Rev Lett ; 104(13): 136802, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20481901

ABSTRACT

The substrate-induced charge-density profile in carbon face epitaxial graphene is determined using nondegenerate ultrafast midinfrared pump-probe spectroscopy. Distinct zero crossings in the differential transmission spectra are used to identify the Fermi levels of layers within the multilayer stack. Probing within the transmission window of the SiC substrate, we find the Fermi levels of the first four heavily doped layers to be, respectively, 360, 215, 140, and 93 meV above the Dirac point. The charge screening length is determined to be one graphene layer, in good agreement with theoretical predictions.

4.
Nano Lett ; 10(4): 1293-6, 2010 Apr 14.
Article in English | MEDLINE | ID: mdl-20210362

ABSTRACT

We report generation of ballistic electric currents in unbiased epitaxial graphene at 300 K via quantum interference between phase-controlled cross-polarized fundamental and second harmonic 220 fs pulses. The transient currents are detected via the emitted terahertz radiation. Because of graphene's special structure symmetry, the injected current direction can be well controlled by the polarization of the pump beam in epitaxial graphene. This all optical injection of current provides not only a noncontact way of injecting directional current in graphene but also new insight into optical and transport process in epitaxial graphene.


Subject(s)
Graphite/chemistry , Quantum Theory , Electric Conductivity , Nanotechnology/methods , Photochemistry
5.
Nano Lett ; 9(12): 4333-7, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19788272

ABSTRACT

We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.


Subject(s)
Arsenicals/chemistry , Crystallization/methods , Indium/chemistry , Manganese/chemistry , Micromanipulation/methods , Microscopy, Scanning Tunneling/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Nanotechnology/methods , Particle Size , Surface Properties
6.
Science ; 324(5929): 924-7, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19443780

ABSTRACT

Application of a magnetic field to conductors causes the charge carriers to circulate in cyclotron orbits with quantized energies called Landau levels (LLs). These are equally spaced in normal metals and two-dimensional electron gases. In graphene, however, the charge carrier velocity is independent of their energy (like massless photons). Consequently, the LL energies are not equally spaced and include a characteristic zero-energy state (the n = 0 LL). With the use of scanning tunneling spectroscopy of graphene grown on silicon carbide, we directly observed the discrete, non-equally-spaced energy-level spectrum of LLs, including the hallmark zero-energy state of graphene. We also detected characteristic magneto-oscillations in the tunneling conductance and mapped the electrostatic potential of graphene by measuring spatial variations in the energy of the n = 0 LL.

7.
Nano Lett ; 9(4): 1462-6, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19301926

ABSTRACT

Graphene films on SiC exhibit coherent transport properties that suggest the potential for novel carbon-based nanoelectronics applications. Recent studies suggest that the role of the interface between single layer graphene and silicon-terminated SiC can strongly influence the electronic properties of the graphene overlayer. In this study, we have exposed the graphitized SiC to atomic hydrogen in an effort to passivate dangling bonds at the interface, while investigating the results utilizing room temperature scanning tunneling microscopy.

8.
Phys Rev Lett ; 101(15): 157402, 2008 Oct 10.
Article in English | MEDLINE | ID: mdl-18999638

ABSTRACT

We investigate the ultrafast relaxation dynamics of hot Dirac fermionic quasiparticles in multilayer epitaxial graphene using ultrafast optical differential transmission spectroscopy. We observe differential transmission spectra which are well described by interband transitions with no electron-hole interaction. Following the initial thermalization and emission of high-energy phonons, the electron cooling is determined by electron-acoustic phonon scattering, found to occur on the time scale of 1 ps for highly doped layers, and 4-11 ps in undoped layers. The spectra also provide strong evidence for the multilayer structure and doping profile of thermally grown epitaxial graphene on SiC.

9.
Science ; 312(5777): 1191-6, 2006 May 26.
Article in English | MEDLINE | ID: mdl-16614173

ABSTRACT

Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

10.
Appl Opt ; 44(18): 3716-24, 2005 Jun 20.
Article in English | MEDLINE | ID: mdl-15989046

ABSTRACT

The demonstration and confirmation of metamaterials with simultaneous negative permittivity and permeability, and thus a negative refractive index, has resulted in a surge of interest in the reflection and refraction phenomena at the interfaces of these so-called negative-index materials (NIMs). We present a systematic study of the Brewster angle, i.e., the angle of incidence at which no reflection occurs, for both TE and TM waves scattering at the interface between two semi-infinite planar media, one of which may be a NIM. Detailed physical explanations that account for the Brewster angle for a plane wave incident upon a NIM are provided under the framework of the Ewald-Oseen extinction theorem, considering the reemission of induced electric and magnetic dipoles. The conditions under which the Brewster angle exists are concisely summarized in a map of different material parameter regimes.

SELECTION OF CITATIONS
SEARCH DETAIL
...