Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 358: 142184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697569

ABSTRACT

Pollution from personal care products, such as UV-filters like avobenzone and nano-zinc oxide (nZnO), poses a growing threat to marine ecosystems. To better understand this hazard, especially for lesser-studied sediment-dwelling marine organisms, we investigated the physiological impacts of simultaneous exposure to nZnO and avobenzone on the lugworm Arenicola marina. Lugworms were exposed to nZnO, avobenzone, or their combination for three weeks. We assessed pollutant-induced metabolic changes by measuring key metabolic intermediates in the body wall and coelomic fluid, and oxidative stress by analyzing antioxidant levels and oxidative lesions in proteins and lipids of the body wall. Exposure to UV filters resulted in shifts in the concentrations of Krebs' cycle and urea cycle intermediates, as well as alterations in certain amino acids in the body wall and coelomic fluid of the lugworms. Pathway enrichment analyses revealed that nZnO induced more pronounced metabolic shifts compared to avobenzone or their combination. Exposure to avobenzone or nZnO alone prompted an increase in tissue antioxidant capacity, indicating a compensatory response to restore redox balance, which effectively prevented oxidative damage to proteins or lipids. However, co-exposure to nZnO and avobenzone suppressed superoxide dismutase and lead to accumulation of lipid peroxides and methionine sulfoxide, indicating oxidative stress and damage to lipids and proteins. Our findings highlight oxidative stress as a significant mechanism of toxicity for both nZnO and avobenzone, especially when combined, and underscores the importance of further investigating the fitness implications of oxidative stress induced by these common UV filters in benthic marine organisms.


Subject(s)
Oxidative Stress , Polychaeta , Sunscreening Agents , Animals , Polychaeta/drug effects , Polychaeta/physiology , Polychaeta/metabolism , Oxidative Stress/drug effects , Sunscreening Agents/toxicity , Zinc Oxide/toxicity , Minerals , Antioxidants/metabolism , Water Pollutants, Chemical/toxicity , Ultraviolet Rays
2.
Environ Pollut ; 316(Pt 1): 120526, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36341831

ABSTRACT

The emissions of marine diesel engines have gained both global and regional attentions because of their impact on human health and climate change. To reduce ship emissions, the International Maritime Organization capped the fuel sulfur content of marine fuels. Consequently, either low-sulfur fuels or additional exhaust gas cleaning devices for the reduction in sulfur dioxide (SO2) emissions became mandatory. Although a wet scrubber reduces the amount of SO2 significantly, there is still a need to consider the reduction in particle emissions directly. We present data on the particle removal efficiency of a scrubber regarding particle number and mass concentration with different marine fuel types, marine gas oil, and two heavy fuel oils (HFOs). An open-loop sulfur scrubber was installed in the exhaust line of a marine diesel test engine. Fine particulate matter was comprehensively characterized in terms of its physical and chemical properties. The wet scrubber led up to a 40% reduction in particle number, whereas a reduction in particle mass emissions was not generally determined. We observed a shift in the size distribution by the scrubber to larger particle diameters when the engine was operated on conventional HFOs. The reduction in particle number concentrations and shift in particle size were caused by the coagulation of soot particles and formation/growing of sulfur-containing particles. Combining the scrubber with a wet electrostatic precipitator as an additional abatement system showed a reduction in particle number and mass emission factors by >98%. Therefore, the application of a wet scrubber for the after-treatment of marine fuel oil combustion will reduce SO2 emissions, but it does not substantially affect the number and mass concentration of respirable particulate matters. To reduce particle emission, the scrubber should be combined with additional abatement systems.


Subject(s)
Air Pollutants , Fuel Oils , Aerosols , Air Pollutants/analysis , Gasoline/analysis , Particulate Matter/analysis , Sulfur/analysis , Vehicle Emissions/analysis
4.
Ambio ; 51(6): 1588-1608, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34637089

ABSTRACT

The Baltic Sea is among the most polluted seas worldwide. Anthropogenic contaminants are mainly introduced via riverine discharge and atmospheric deposition. Regional and international measures have successfully been employed to reduce concentrations of several legacy contaminants. However, current Baltic Sea monitoring programs do not address compounds of emerging concern. Hence, potentially harmful pharmaceuticals, UV filters, polar pesticides, estrogenic compounds, per- and polyfluoroalkyl substances, or naturally produced algal toxins are not taken into account during the assessment of the state of the Baltic Sea. Herein, we conducted literature searches based on systematic approaches and compiled reported data on these substances in Baltic Sea surface water and on methodological advances for sample processing and chemical as well as effect-based analysis of these analytically challenging marine pollutants. Finally, we provide recommendations for improvement of future contaminant and risk assessment in the Baltic Sea, which revolve around a combination of both chemical and effect-based analyses.


Subject(s)
Pesticides , Water Pollutants, Chemical , Baltic States , Environmental Monitoring , Oceans and Seas , Seawater/chemistry , Water Pollutants, Chemical/analysis
5.
Sci Total Environ ; 798: 149171, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34329935

ABSTRACT

The global occurrence of organic UV filters in the marine environment is of increasing ecotoxicological concern. Here we assessed the toxicity of UV filters ensulizole and octocrylene in the blue mussels Mytilus edulis exposed to 10 or 100 µg l-1 of octocrylene and ensulizole for two weeks. An integrated battery of biochemical and molecular biomarkers related to xenobiotics metabolism and cellular toxicity (including oxidative stress, DNA damage, apoptosis, autophagy and inflammation) was used to assess the toxicity of these UV filters in the mussels. Octocrylene (but not ensulizole) accumulated in the mussel tissues during the waterborne exposures. Both studied UV filters induced sublethal toxic effects in M. edulis at the investigated concentrations. These effects involved induction of oxidative stress, genotoxicity (indicated by upregulation of DNA damage sensing and repair markers), upregulation of apoptosis and inflammation, and dysregulation of the xenobiotic biotransformation system. Octocrylene induced cellular stress in a concentration-dependent manner, whereas ensulizole appeared to be more toxic at the lower (10 µg l-1) studied concentration than at 100 µg l-1. The different concentration-dependence of sublethal effects and distinct toxicological profiles of ensulizole and octocrylene show that the environmental toxicity is not directly related to lipophilicity and bioaccumulation potential of these UV filters and demonstrate the importance of using bioassays for toxicity assessment of emerging pollutants in coastal marine ecosystems.


Subject(s)
Mytilus edulis , Mytilus , Water Pollutants, Chemical , Acrylates , Animals , Benzimidazoles , Biomarkers , Ecosystem , Sulfonic Acids , Sunscreening Agents/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Environ Sci Pollut Res Int ; 28(29): 39296-39309, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33755886

ABSTRACT

From 2001 to 2014, 13 surveys were conducted in the Baltic Sea, to determine its pollution of 50 micropollutants. The investigations focused mostly on the German western Baltic Sea; in 2008, one survey covered the entire Baltic Sea. Various groups of herbicides (such as triazines, phenoxyacetic acid, phenylurea), perfluoroalkyl substances, pharmaceuticals, and industrial products were analyzed during these surveys. The highest concentrations (median 1 to 4 ng/L) were observed for atrazine, simazine, chloridazone, 2,4-dichlorophenoxyacetic acid, benzotriazole, primidone, and carbamazepine. Most micropollutants exhibited a relatively homogenous spatial distribution, though some herbicides show elevated concentrations in certain regions (e.g., Odra estuary), indicating a riverine input. The data set was analyzed, both for seasonal influences and long-time trends. Some herbicides exhibited higher concentrations during summertime. Both upward- and downward-directed time trends could be identified for some herbicides and perfluorinated compounds. For most of the detected compounds, a low-risk quotient was calculated. Only the occurrence of carbendazim could potentially pose a higher risk to the Baltic Sea.


Subject(s)
Water Pollutants, Chemical , Baltic States , Environmental Monitoring , Estuaries , Risk Assessment , Seasons , Water Pollutants, Chemical/analysis
7.
Mar Pollut Bull ; 124(1): 388-399, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28802657

ABSTRACT

The occurrence of pharmaceuticals and personal care products (PPCPs) in the marine environment is of great concern. This study was done to determine the emergence of eight pharmaceuticals and eleven ultraviolet filters (UV-Filters) in 5 rivers/streams discharging into the Baltic Sea. Furthermore, a focus was put on the influence of wastewater treatment plant as indirect source and the occurrence of the PPCPs in close beach proximity. Two pharmaceuticals (sulfamethoxazole, salicylic acid) and two UV-filters (2-phenylbenzimidazole-5-sulfonic acid, octocrylene) were detected in all analyzed water samples, with concentration ranging from 0.6ng/L to 836.3ng/L. In all rivers the PPCP concentration decreases towards the Baltic Sea. Sulfamethoxazole was detected at comparable concentration along the coast, which leads to the assumption of stable concentration in beach proximity. Along the coast UV-filters appeared in varying concentrations, leading to the conclusion that the direct input into the marine environment plays a bigger role than the indirect input.


Subject(s)
Pharmaceutical Preparations/analysis , Sunscreening Agents/analysis , Water Pollutants, Chemical/analysis , Acrylates/analysis , Benzimidazoles/analysis , Environmental Monitoring , Germany , Oceans and Seas , Rivers/chemistry , Salicylic Acid/analysis , Sulfamethoxazole/analysis , Sulfonic Acids/analysis , Wastewater
8.
Mar Pollut Bull ; 101(2): 860-6, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26581813

ABSTRACT

Available data about contamination by polar substances are mostly reported for rivers and near-shore waters and only limited studies exists about their occurrence in marine waters. We present concentrations and distribution of several polar pesticides and UV-filters in surface waters of three inland seas, the Baltic, Black and Mediterranean Sea. Many of the investigated compounds were below detection limits, however, those found in off-shore waters raise a concern about their persistence and possible adverse effect on the ecosystem. Despite a longstanding EU-wide ban we were able to detect atrazine in the Mediterranean and the Baltic Sea. Concentrations in the Black Sea were substantially higher. Runoff from agricultural and urban areas was the main transport route to marine ecosystems for investigated compounds, though irgarol in Mediterranean waters was attributed to intense maritime traffic. 2-Phenylbenzimidazole-5-sulfonic acid was the only UV-filter detected in marine waters, while benzophenone-4 was observed in the estuaries. Occurrence of UV-filters was seasonal.


Subject(s)
Organic Chemicals/analysis , Pesticides/analysis , Water Pollutants, Chemical/analysis , Atrazine/analysis , Benzimidazoles/analysis , Benzophenones/analysis , Black Sea , Ecosystem , Environmental Monitoring/methods , Estuaries , Limit of Detection , Mediterranean Sea , Oceans and Seas , Seasons , Sulfonic Acids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...